BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 8157505)

  • 1. Expression of BDNF and NT-3 mRNA in hair cells of the organ of Corti: quantitative analysis in developing rats.
    Wheeler EF; Bothwell M; Schecterson LC; von Bartheld CS
    Hear Res; 1994 Feb; 73(1):46-56. PubMed ID: 8157505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inner ear hair cells deteriorate in mice engineered to have no or diminished innervation.
    Kersigo J; Fritzsch B
    Front Aging Neurosci; 2015; 7():33. PubMed ID: 25852547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of Trk A receptors in the mammalian inner ear.
    Dai CF; Steyger PS; Wang ZM; Vass Z; Nuttall AL
    Hear Res; 2004 Jan; 187(1-2):1-11. PubMed ID: 14698082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss.
    Bankoti K; Generotti C; Hwa T; Wang L; O'Malley BW; Li D
    Mol Ther Methods Clin Dev; 2021 Jun; 21():209-236. PubMed ID: 33850952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Neurotrophin-3 on Intrinsic Neuronal Properties at a Central Auditory Structure.
    Takahashi M; Sanchez JT
    Neurosci Insights; 2020; 15():2633105520980442. PubMed ID: 33354669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-Dependency of Neurite Outgrowth in Postnatal Mouse Cochlear Spiral Ganglion Explants.
    Frick C; Fink S; Schmidbauer D; Rousset F; Eickhoff H; Tropitzsch A; Kramer B; Senn P; Glueckert R; Rask-Andersen H; Wiesmüller KH; Löwenheim H; Müller M
    Brain Sci; 2020 Aug; 10(9):. PubMed ID: 32839381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the transcriptome of nascent hair cells and identification of direct targets of the Atoh1 transcription factor.
    Cai T; Jen HI; Kang H; Klisch TJ; Zoghbi HY; Groves AK
    J Neurosci; 2015 Apr; 35(14):5870-83. PubMed ID: 25855195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma.
    Wan G; Gómez-Casati ME; Gigliello AR; Liberman MC; Corfas G
    Elife; 2014 Oct; 3():. PubMed ID: 25329343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for the canonical nuclear factor-κB pathway in coupling neurotrophin-induced differential survival of developing spiral ganglion neurons.
    Vandenbosch R; Chocholova E; Robe PA; Wang Y; Lambert C; Moonen G; Lallemend F; Malgrange B; Hadjab S
    Front Cell Neurosci; 2013; 7():242. PubMed ID: 24348336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NeuroD regulates neuronal migration.
    Kim WY
    Mol Cells; 2013 May; 35(5):444-9. PubMed ID: 23652629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in responsiveness of rat spiral ganglion neurons to neurotrophins across age: differential regulation of survival and neuritogenesis.
    Kondo K; Pak K; Chavez E; Mullen L; Euteneuer S; Ryan AF
    Int J Neurosci; 2013 Jul; 123(7):465-75. PubMed ID: 23301942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes in the responsiveness of rat spiral ganglion neurons to neurotrophic factors in dissociated culture: differential responses for survival, neuritogenesis and neuronal morphology.
    Jin Y; Kondo K; Ushio M; Kaga K; Ryan AF; Yamasoba T
    Cell Tissue Res; 2013 Jan; 351(1):15-27. PubMed ID: 23149719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ras/p38 and PI3K/Akt but not Mek/Erk signaling mediate BDNF-induced neurite formation on neonatal cochlear spiral ganglion explants.
    Mullen LM; Pak KK; Chavez E; Kondo K; Brand Y; Ryan AF
    Brain Res; 2012 Jan; 1430():25-34. PubMed ID: 22119396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development.
    Barclay M; Ryan AF; Housley GD
    Neural Dev; 2011 Oct; 6():33. PubMed ID: 21989106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional role of neurotrophin-3 in synapse regeneration by spiral ganglion neurons on inner hair cells after excitotoxic trauma in vitro.
    Wang Q; Green SH
    J Neurosci; 2011 May; 31(21):7938-49. PubMed ID: 21613508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex primary afferents: What the distribution of electrophysiologically-relevant phenotypes within the spiral ganglion tells us about peripheral neural coding.
    Davis RL; Liu Q
    Hear Res; 2011 Jun; 276(1-2):34-43. PubMed ID: 21276843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PLCγ-activated signalling is essential for TrkB mediated sensory neuron structural plasticity.
    Sciarretta C; Fritzsch B; Beisel K; Rocha-Sanchez SM; Buniello A; Horn JM; Minichiello L
    BMC Dev Biol; 2010 Oct; 10():103. PubMed ID: 20932311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of neurotrophin signaling with Bcl-2 localized to the mitochondria and endoplasmic reticulum on spiral ganglion neuron survival and neurite growth.
    Renton JP; Xu N; Clark JJ; Hansen MR
    J Neurosci Res; 2010 Aug; 88(10):2239-51. PubMed ID: 20209634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postnatal development of NT3 and TrkC in mouse ventral cochlear nucleus.
    Feng J; Bendiske J; Morest DK
    J Neurosci Res; 2010 Jan; 88(1):86-94. PubMed ID: 19610111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro.
    Pettingill LN; Minter RL; Shepherd RK
    Neuroscience; 2008 Mar; 152(3):821-8. PubMed ID: 18304740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.