BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8157659)

  • 1. Critical nucleotides in the interaction of a LysR-type regulator with its target promoter region. catBC promoter activation by CatR.
    Parsek MR; Ye RW; Pun P; Chakrabarty AM
    J Biol Chem; 1994 Apr; 269(15):11279-84. PubMed ID: 8157659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential DNA bending introduced by the Pseudomonas putida LysR-type regulator, CatR, at the plasmid-borne pheBA and chromosomal catBC promoters.
    Parsek MR; Kivisaar M; Chakrabarty AM
    Mol Microbiol; 1995 Mar; 15(5):819-28. PubMed ID: 7596284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of CatR and cis,cis-muconate in activation of the catBC operon, which is involved in benzoate degradation in Pseudomonas putida.
    Parsek MR; Shinabarger DL; Rothmel RK; Chakrabarty AM
    J Bacteriol; 1992 Dec; 174(23):7798-806. PubMed ID: 1447146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide sequencing and characterization of Pseudomonas putida catR: a positive regulator of the catBC operon is a member of the LysR family.
    Rothmel RK; Aldrich TL; Houghton JE; Coco WM; Ornston LN; Chakrabarty AM
    J Bacteriol; 1990 Feb; 172(2):922-31. PubMed ID: 1688844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of the Pseudomonas putida regulatory protein CatR: transcriptional studies and determination of the CatR DNA-binding site by hydroxyl-radical footprinting.
    Rothmel RK; Shinabarger DL; Parsek MR; Aldrich TL; Chakrabarty AM
    J Bacteriol; 1991 Aug; 173(15):4717-24. PubMed ID: 1649820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical nucleotides in the interaction of CatR with the pheBA promoter: conservation of the CatR-mediated regulation mechanisms between the pheBA and catBCA operons.
    Tover A; Zernant J; Chugani SA; Chakrabarty AM; Kivisaar M
    Microbiology (Reading); 2000 Jan; 146 ( Pt 1)():173-183. PubMed ID: 10658664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional repression mediated by LysR-type regulator CatR bound at multiple binding sites.
    Chugani SA; Parsek MR; Chakrabarty AM
    J Bacteriol; 1998 May; 180(9):2367-72. PubMed ID: 9573187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of two LysR-type regulatory proteins CatR and ClcR with heterologous promoters: functional and evolutionary implications.
    Parsek MR; McFall SM; Shinabarger DL; Chakrabarty AM
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12393-7. PubMed ID: 7809047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme.
    McFall SM; Chugani SA; Chakrabarty AM
    Gene; 1998 Nov; 223(1-2):257-67. PubMed ID: 9858745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the catBCA promoter: probing the interaction of CatR and RNA polymerase through in vitro transcription.
    Chugani SA; Parsek MR; Hershberger CD; Murakami K; Ishihama A; Chakrabarty AM
    J Bacteriol; 1997 Apr; 179(7):2221-7. PubMed ID: 9079907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation by two CatR proteins that differ in binding affinity to catB promoters expressing two cat gene clusters.
    Takashima A; Murakami S; Takenaka S; Aoki K
    Biosci Biotechnol Biochem; 2001 Oct; 65(10):2146-53. PubMed ID: 11758902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of the Proteus vulgaris BlaA protein, the activator of the beta-lactamase gene.
    Ishiguro K; Sugimoto K
    J Biochem; 1996 Jul; 120(1):98-103. PubMed ID: 8864850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis.
    Veselý M; Knoppová M; Nesvera J; Pátek M
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):159-68. PubMed ID: 17483937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in
    Singh B; Arya G; Kundu N; Sangwan A; Nongthombam S; Chaba R
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H2O2-sensitive fur-like repressor CatR regulating the major catalase gene in Streptomyces coelicolor.
    Hahn JS; Oh SY; Chater KF; Cho YH; Roe JH
    J Biol Chem; 2000 Dec; 275(49):38254-60. PubMed ID: 10991944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of DNA binding and transcriptional activation by the LysR-type transcriptional regulator CbbR of Xanthobacter flavus.
    van Keulen G; Ridder AN; Dijkhuizen L; Meijer WG
    J Bacteriol; 2003 Feb; 185(4):1245-52. PubMed ID: 12562794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida PaW85.
    Kasak L; Hôrak R; Nurk A; Talvik K; Kivisaar M
    J Bacteriol; 1993 Dec; 175(24):8038-42. PubMed ID: 8253692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GcvA binding site 1 in the gcvTHP promoter of Escherichia coli is required for GcvA-mediated repression but not for GcvA-mediated activation.
    Wonderling LD; Urbanowski ML; Stauffer GV
    Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2909-2918. PubMed ID: 11065369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The paralogous MarR/DUF24-family repressors YodB and CatR control expression of the catechol dioxygenase CatE in Bacillus subtilis.
    Chi BK; Kobayashi K; Albrecht D; Hecker M; Antelmann H
    J Bacteriol; 2010 Sep; 192(18):4571-81. PubMed ID: 20639328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of iron homeostasis by peroxide-sensitive CatR, a Fur-family regulator in Streptomyces coelicolor.
    Kim Y; Roe JH; Park JH; Cho YJ; Lee KL
    J Microbiol; 2021 Dec; 59(12):1083-1091. PubMed ID: 34865197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.