BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8157965)

  • 1. Isolation and characterization of the Xenopus terminal deoxynucleotidyl transferase.
    Lee A; Hsu E
    J Immunol; 1994 May; 152(9):4500-7. PubMed ID: 8157965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal and spatial expression of an intestinal Na+/PO4 3- cotransporter correlates with epithelial transformation during thyroid hormone-dependent frog metamorphosis.
    Ishizuya-Oka A; Stolow MA; Ueda S; Shi YB
    Dev Genet; 1997; 20(1):53-66. PubMed ID: 9094212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and developmental characterization of Xenopus laevis membrane type-3 matrix metalloproteinase (MT3-MMP).
    Hammoud L; Walsh LA; Damjanovski S
    Biochem Cell Biol; 2006 Apr; 84(2):167-77. PubMed ID: 16609697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix Gla protein in Xenopus laevis: molecular cloning, tissue distribution, and evolutionary considerations.
    Cancela ML; Ohresser MC; Reia JP; Viegas CS; Williamson MK; Price PA
    J Bone Miner Res; 2001 Sep; 16(9):1611-21. PubMed ID: 11550673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cDNA cloning and functional characterization of Xenopus laevis DNase gamma.
    Shiokawa D; Hatanaka T; Hatanaka M; Shika Y; Nishikawa A; Tanuma S
    Apoptosis; 2006 Apr; 11(4):555-62. PubMed ID: 16547842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substantial N diversity is generated in T cell receptor alpha genes at birth despite low levels of terminal deoxynucleotidyl transferase expression in mouse thymus.
    Cherrier M; Cardona A; Rosinski-Chupin I; Rougeon F; Doyen N
    Eur J Immunol; 2002 Dec; 32(12):3651-6. PubMed ID: 12516554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of rainbow trout terminal deoxynucleotidyl transferase structure and expression. TdT and RAG1 co-expression define the trout primary lymphoid tissues.
    Hansen JD
    Immunogenetics; 1997; 46(5):367-75. PubMed ID: 9271626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and expression of recombination activating genes (RAG-1 and RAG-2) in Xenopus laevis.
    Greenhalgh P; Olesen CE; Steiner LA
    J Immunol; 1993 Sep; 151(6):3100-10. PubMed ID: 8376769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A third Ig light chain gene isotype in Xenopus laevis consists of six distinct VL families and is related to mammalian lambda genes.
    Haire RN; Ota T; Rast JP; Litman RT; Chan FY; Zon LI; Litman GW
    J Immunol; 1996 Aug; 157(4):1544-50. PubMed ID: 8759737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning, tissue distribution, and hormonal control in the ovary of Cx41 mRNA, a novel Xenopus connexin gene transcript.
    Yoshizaki G; PatiƱo R
    Mol Reprod Dev; 1995 Sep; 42(1):7-18. PubMed ID: 8562053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel human amino acid transporter, hNAT3: cDNA cloning, chromosomal mapping, genomic structure, expression, and functional characterization.
    Gu S; Adan-Rice D; Leach RJ; Jiang JX
    Genomics; 2001 Jun; 74(3):262-72. PubMed ID: 11414754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A set of novel tadpole specific genes expressed only in the epidermis are down-regulated by thyroid hormone during Xenopus laevis metamorphosis.
    Furlow JD; Berry DL; Wang Z; Brown DD
    Dev Biol; 1997 Feb; 182(2):284-98. PubMed ID: 9070328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the expression and function of the small heat shock protein gene, hsp27, in Xenopus laevis embryos.
    Tuttle AM; Gauley J; Chan N; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2007 May; 147(1):112-21. PubMed ID: 17267255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lung specific developmental expression of the Xenopus laevis surfactant protein C and B genes.
    Hyatt BA; Resnik ER; Johnson NS; Lohr JL; Cornfield DN
    Gene Expr Patterns; 2007 Jan; 7(1-2):8-14. PubMed ID: 16798105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of Xenopus laevis xSox-B1 cDNA.
    Sakai Y; Hiraoka Y; Konishi M; Ogawa M; Aiso S
    Arch Biochem Biophys; 1997 Oct; 346(1):1-6. PubMed ID: 9328277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and diversity of T-lymphocyte antigen receptors alpha and gamma in Xenopus.
    Haire RN; Kitzan Haindfield MK; Turpen JB; Litman GW
    Immunogenetics; 2002 Sep; 54(6):431-8. PubMed ID: 12242593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning of bullfrog prolactin receptor cDNA: changes in prolactin receptor mRNA level during metamorphosis.
    Hasunuma I; Yamamoto K; Kikuyama S
    Gen Comp Endocrinol; 2004 Sep; 138(3):200-10. PubMed ID: 15364202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terminal deoxynucleotidyl transferase expression during neonatal life alters D(H) reading frame usage and Ig-receptor-dependent selection of V regions.
    Marshall AJ; Doyen N; Bentolila LA; Paige CJ; Wu GE
    J Immunol; 1998 Dec; 161(12):6657-63. PubMed ID: 9862694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metamorphosis-dependent transcriptional regulation of xak-c, a novel Xenopus type I keratin gene.
    Watanabe Y; Tanaka R; Kobayashi H; Utoh R; Suzuki K; Obara M; Yoshizato K
    Dev Dyn; 2002 Dec; 225(4):561-70. PubMed ID: 12454932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-adenosyl-L-homocysteine hydrolase from Xenopus laevis--identification, developmental expression and evolution.
    Seery LT; McCabe BD; Schoenberg DR; Whitehead AS
    Biochem Biophys Res Commun; 1994 Dec; 205(3):1539-46. PubMed ID: 7811234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.