These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 8158657)

  • 1. Furrowing surface contraction wave coincident with primary neural induction in amphibian embryos.
    Brodland GW; Gordon R; Scott MJ; Björklund NK; Luchka KB; Martin CC; Matuga C; Globus M; Vethamany-Globus S; Shu D
    J Morphol; 1994 Feb; 219(2):131-42. PubMed ID: 8158657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface contraction and expansion waves correlated with differentiation in axolotl embryos. II. In contrast to urodeles, the anuran Xenopus laevis does not show furrowing surface contraction waves.
    Nieuwkoop PD; Björklund NK; Gordon R
    Int J Dev Biol; 1996 Aug; 40(4):661-4. PubMed ID: 8877438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of concanavalin A on neural induction in the young gastrula of the axolotl (Ambystoma mexicanum Shaw. ) and pleurodele (Pleurodeles waltlii Michah.)].
    Sadoughi M
    Acta Morphol Neerl Scand; 1981 Jun; 19(2):127-34. PubMed ID: 7257883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface contraction and expansion waves correlated with differentiation in axolotl embryos--I. Prolegomenon and differentiation during invagination through the blastopore, as shown by the fate map.
    Björklund NK; Gordon R
    Comput Chem; 1994 Sep; 18(3):333-45. PubMed ID: 16649266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of bilateral zones of ingressing superficial cells during gastrulation of Ambystoma mexicanum.
    Lundmark C
    J Embryol Exp Morphol; 1986 Sep; 97():47-62. PubMed ID: 3794603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum.
    Kurth T; Berger J; Wilsch-Bräuninger M; Kretschmar S; Cerny R; Schwarz H; Löfberg J; Piendl T; Epperlein HH
    Methods Cell Biol; 2010; 96():395-423. PubMed ID: 20869532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of neuronal differentiation by planar signals in Xenopus embryos.
    Sater AK; Steinhardt RA; Keller R
    Dev Dyn; 1993 Aug; 197(4):268-80. PubMed ID: 8292824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neural induction process; its morphogenetic aspects.
    Nieuwkoop PD
    Int J Dev Biol; 1999; 43(7):615-23. PubMed ID: 10668971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface contraction waves or cell proliferation waves in the presumptive neurectoderm during amphibian gastrulation: Mexican axolotl versus African clawed frog.
    Desnitskiy AG
    Biosystems; 2020 Dec; 198():104286. PubMed ID: 33181236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organophosphorus pesticides effect on early stages of the axolotl Ambystoma mexicanum (Amphibia: Caudata).
    Robles-Mendoza C; García-Basilio C; Cram-Heydrich S; Hernández-Quiroz M; Vanegas-Pérez C
    Chemosphere; 2009 Feb; 74(5):703-10. PubMed ID: 19012946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and immunohistochemical analyses of cardiac troponin T during cardiac development in the Mexican axolotl, Ambystoma mexicanum.
    Zhang C; Pietras KM; Sferrazza GF; Jia P; Athauda G; Rueda-de-Leon E; Maier JA; Dube DK; Lemanski SL; Lemanski LF
    J Cell Biochem; 2007 Jan; 100(1):1-15. PubMed ID: 16888779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The epidermis is a source of directional information for the migrating pronephric duct in Ambystoma mexicanum embryos.
    Drawbridge J; Wolfe AE; Delgado YL; Steinberg MS
    Dev Biol; 1995 Dec; 172(2):440-51. PubMed ID: 8612962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cardiac neural crest in Ambystoma mexicanum.
    Bashir NS; Armstrong JB
    Int J Dev Biol; 1999 May; 43(3):269-74. PubMed ID: 10410907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of in vivo stress resultants in neurulation-stage amphibian embryos.
    Benko R; Brodland GW
    Ann Biomed Eng; 2007 Apr; 35(4):672-81. PubMed ID: 17237990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axolotl (Ambystoma mexicanum) embryonic transplantation methods.
    Nacu E; Knapp D; Tanaka EM; Epperlein HH
    Cold Spring Harb Protoc; 2009 Aug; 2009(8):pdb.prot5265. PubMed ID: 20147241
    [No Abstract]   [Full Text] [Related]  

  • 16. Expression pattern of an axolotl floor plate-specific fork head gene reflects early developmental differences between frogs and salamanders.
    Whiteley M; Mathers PH; Jamrich M
    Dev Genet; 1997; 20(2):145-51. PubMed ID: 9144925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dominant lethal induction by ethyl methanesulfonate in the male axolotl (Ambystoma mexicanum).
    Armstrong JB; Gillespie LL
    J Exp Zool; 1980 Jun; 212(3):415-21. PubMed ID: 7462966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid method for observing the internal morphology of amphibian embryos.
    Smith SC; Armstrong JB; Hoppe DC
    Scanning Microsc; 1988 Dec; 2(4):2087-90. PubMed ID: 3238382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural crest potential for tooth development in a urodele amphibian: developmental and evolutionary significance.
    Graveson AC; Smith MM; Hall BK
    Dev Biol; 1997 Aug; 188(1):34-42. PubMed ID: 9245509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile properties of embryonic epithelia measured using a novel instrument.
    Wiebe C; Brodland GW
    J Biomech; 2005 Oct; 38(10):2087-94. PubMed ID: 16084209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.