These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 8158797)
1. In vivo laser light distribution in human prostatic carcinoma. Whitehurst C; Pantelides ML; Moore JV; Brooman PJ; Blacklock NJ J Urol; 1994 May; 151(5):1411-5. PubMed ID: 8158797 [TBL] [Abstract][Full Text] [Related]
2. In situ comparison of 665 nm and 633 nm wavelength light penetration in the human prostate gland. Lee LK; Whitehurst C; Pantelides ML; Moore JV Photochem Photobiol; 1995 Nov; 62(5):882-6. PubMed ID: 8570727 [TBL] [Abstract][Full Text] [Related]
3. An interstitial light assembly for photodynamic therapy in prostatic carcinoma. Lee LK; Whitehurst C; Pantelides ML; Moore JV BJU Int; 1999 Nov; 84(7):821-6. PubMed ID: 10532979 [TBL] [Abstract][Full Text] [Related]
4. Optimization of multifiber light delivery for the photodynamic therapy of localized prostate cancer. Whitehurst C; Pantelides ML; Moore JV; Blacklock NJ Photochem Photobiol; 1993 Oct; 58(4):589-93. PubMed ID: 8248336 [TBL] [Abstract][Full Text] [Related]
5. Photodynamic therapy for localised prostatic cancer: light penetration in the human prostate gland. Pantelides ML; Whitehurst C; Moore JV; King TA; Blacklock NJ J Urol; 1990 Feb; 143(2):398-401. PubMed ID: 2299739 [TBL] [Abstract][Full Text] [Related]
6. Optical properties of human prostate at 732 nm measured in mediated photodynamic therapy. Zhu TC; Dimofte A; Finlay JC; Stripp D; Busch T; Miles J; Whittington R; Malkowicz SB; Tochner Z; Glatstein E; Hahn SM Photochem Photobiol; 2005; 81(1):96-105. PubMed ID: 15535736 [TBL] [Abstract][Full Text] [Related]
7. Diverse optical characteristic of the prostate and light delivery system: implications for computer modelling of prostatic photodynamic therapy. Jankun J; Keck RW; Skrzypczak-Jankun E; Lilge L; Selman SH BJU Int; 2005 Jun; 95(9):1237-44. PubMed ID: 15892808 [TBL] [Abstract][Full Text] [Related]
8. Laser dosimetry studies in the prostate. Chen Q; Hetzel FW J Clin Laser Med Surg; 1998 Feb; 16(1):9-12. PubMed ID: 9728124 [TBL] [Abstract][Full Text] [Related]
9. Spatial distribution of liposome encapsulated tin etiopurpurin dichloride (SnET2) in the canine prostate: implications for computer simulation of photodynamic therapy. Aniola J; Selman SH; Lilge L; Keck R; Jankun J Int J Mol Med; 2003 Mar; 11(3):287-91. PubMed ID: 12579328 [TBL] [Abstract][Full Text] [Related]
10. Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy. Zhu TC; Finlay JC; Hahn SM J Photochem Photobiol B; 2005 Jun; 79(3):231-41. PubMed ID: 15896650 [TBL] [Abstract][Full Text] [Related]
11. Optical dosimetry for interstitial photodynamic therapy. Arnfield MR; Tulip J; Chetner M; McPhee MS Med Phys; 1989; 16(4):602-8. PubMed ID: 2770633 [TBL] [Abstract][Full Text] [Related]
12. Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate. Johansson A; Axelsson J; Andersson-Engels S; Swartling J Med Phys; 2007 Nov; 34(11):4309-21. PubMed ID: 18072496 [TBL] [Abstract][Full Text] [Related]
13. In vivo optical properties of normal canine prostate at 732 nm using motexafin lutetium-mediated photodynamic therapy. Zhu TC; Hahn SM; Kapatkin AS; Dimofte A; Rodriguez CE; Vulcan TG; Glatstein E; Hsi RA Photochem Photobiol; 2003 Jan; 77(1):81-8. PubMed ID: 12856887 [TBL] [Abstract][Full Text] [Related]
14. Optical characteristics of the canine prostate at 665 nm sensitized with tin etiopurpurin dichloride: need for real-time monitoring of photodynamic therapy. Jankun J; Lilge L; Douplik A; Keck RW; Pestka M; Szkudlarek M; Stevens PJ; Lee RJ; Selman SH J Urol; 2004 Aug; 172(2):739-43. PubMed ID: 15247773 [TBL] [Abstract][Full Text] [Related]
15. Treatment planning using tailored and standard cylindrical light diffusers for photodynamic therapy of the prostate. Rendon A; Beck JC; Lilge L Phys Med Biol; 2008 Feb; 53(4):1131-49. PubMed ID: 18263963 [TBL] [Abstract][Full Text] [Related]
16. Light penetration in the human prostate: a whole prostate clinical study at 763 nm. Moore CM; Mosse CA; Allen C; Payne H; Emberton M; Bown SG J Biomed Opt; 2011; 16(1):015003. PubMed ID: 21280905 [TBL] [Abstract][Full Text] [Related]
17. Photodynamic therapy with Pd-Bacteriopheophorbide (TOOKAD): successful in vivo treatment of human prostatic small cell carcinoma xenografts. Koudinova NV; Pinthus JH; Brandis A; Brenner O; Bendel P; Ramon J; Eshhar Z; Scherz A; Salomon Y Int J Cancer; 2003 May; 104(6):782-9. PubMed ID: 12640688 [TBL] [Abstract][Full Text] [Related]
18. Photodynamic therapy of prostate cancer: an in vitro study. Camps JL; Powers SK; Beckman WC; Brown JT; Weissman RM J Urol; 1985 Dec; 134(6):1222-6. PubMed ID: 4057423 [TBL] [Abstract][Full Text] [Related]
19. Preclinical studies in normal canine prostate of a novel palladium-bacteriopheophorbide (WST09) photosensitizer for photodynamic therapy of prostate cancers. Chen Q; Huang Z; Luck D; Beckers J; Brun PH; Wilson BC; Scherz A; Salomon Y; Hetzel FW Photochem Photobiol; 2002 Oct; 76(4):438-45. PubMed ID: 12405153 [TBL] [Abstract][Full Text] [Related]
20. Fractionated versus standard continuous light delivery in interstitial photodynamic therapy of dunning prostate carcinomas. Xiao Z; Halls S; Dickey D; Tulip J; Moore RB Clin Cancer Res; 2007 Dec; 13(24):7496-505. PubMed ID: 18094434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]