These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8159011)

  • 1. A mapped clock oscillator model for transmembrane electrical rhythmic activity in excitable cells.
    Bardakjian BL; Diamant NE
    J Theor Biol; 1994 Feb; 166(3):225-35. PubMed ID: 8159011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A synaptic input portal for a mapped clock oscillator model of neuronal electrical rhythmic activity.
    Zariffa J; Ebden M; Bardakjian BL
    J Neural Eng; 2004 Sep; 1(3):158-64. PubMed ID: 15876635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapped clock oscillators as ring devices and their application to neuronal electrical rhythms.
    Zalay OC; Bardakjian BL
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):233-44. PubMed ID: 18586602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electrical description of the generation of slow waves in the antrum of the guinea-pig.
    Edwards FR; Hirst GD
    J Physiol; 2005 Apr; 564(Pt 1):213-32. PubMed ID: 15613372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple nonlinear model of electrical activity in the intestine.
    Aliev RR; Richards W; Wikswo JP
    J Theor Biol; 2000 May; 204(1):21-8. PubMed ID: 10772846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative model of gastric smooth muscle cellular activation.
    Corrias A; Buist ML
    Ann Biomed Eng; 2007 Sep; 35(9):1595-607. PubMed ID: 17486452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal electrical rhythms described by composite mapped clock oscillators.
    Zariffa J; Bardakjian BL
    Ann Biomed Eng; 2006 Jan; 34(1):128-41. PubMed ID: 16450198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The refractory properties of mapped clock oscillators representing smooth muscle electrical oscillations.
    Bardakjian BL; Lau MY
    Prog Clin Biol Res; 1990; 327():627-34. PubMed ID: 2320620
    [No Abstract]   [Full Text] [Related]  

  • 9. Phase independent resetting in relaxation and bursting oscillators.
    Smolen P; Sherman A
    J Theor Biol; 1994 Aug; 169(4):339-48. PubMed ID: 7967627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical description of regenerative potentials recorded from circular smooth muscle of guinea pig antrum.
    Edwards FR; Hirst GD
    Am J Physiol Gastrointest Liver Physiol; 2003 Oct; 285(4):G661-70. PubMed ID: 12791598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pacemaker activity from submucosal interstitial cells of Cajal drives high-frequency and low-amplitude circular muscle contractions in the mouse proximal colon.
    Yoneda S; Fukui H; Takaki M
    Neurogastroenterol Motil; 2004 Oct; 16(5):621-7. PubMed ID: 15500519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergent properties of electrically coupled smooth muscle cells.
    Koenigsberger M; Sauser R; Meister JJ
    Bull Math Biol; 2005 Nov; 67(6):1253-72. PubMed ID: 15998534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise-resistant and synchronized oscillation of the segmentation clock.
    Horikawa K; Ishimatsu K; Yoshimoto E; Kondo S; Takeda H
    Nature; 2006 Jun; 441(7094):719-23. PubMed ID: 16760970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interstitial cells of Cajal and electrical activity of smooth muscle in porcine ileum.
    Hudson NP; Mayhew IG; Pearson GT
    Acta Physiol (Oxf); 2006 Jul; 187(3):391-7. PubMed ID: 16776664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous switching of frequency-locking by periodic stimulus in oscillators of plasmodium of the true slime mold.
    Takamatsu A; Yamamoto T; Fujii T
    Biosystems; 2004; 76(1-3):133-40. PubMed ID: 15351137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the entrainment of the alpha rhythm during stroboscopic flash stimulation by means of coherence analysis.
    Miranda de Sá AM; Infantosi AF
    Med Eng Phys; 2005 Mar; 27(2):167-73. PubMed ID: 15642512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational modeling of synchronization process of the circadian timing system of mammals.
    Cardoso FR; de Oliveira Cruz FA; Silva D; Cortez CM
    Biol Cybern; 2009 May; 100(5):385-93. PubMed ID: 19367410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaotic frequency scaling in a coupled oscillator model for free rhythmic actions.
    Raftery A; Cusumano J; Sternad D
    Neural Comput; 2008 Jan; 20(1):205-26. PubMed ID: 18045006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels.
    Zabel M; Koller BS; Sachs F; Franz MR
    Cardiovasc Res; 1996 Jul; 32(1):120-30. PubMed ID: 8776409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical silencing of PDF neurons advances the phase of non-PDF clock neurons in Drosophila.
    Wu Y; Cao G; Nitabach MN
    J Biol Rhythms; 2008 Apr; 23(2):117-28. PubMed ID: 18375861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.