These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8160307)

  • 1. High-density morphologies of ice in high-pressure frozen biological specimens.
    Richter K
    Ultramicroscopy; 1994 Mar; 53(3):237-49. PubMed ID: 8160307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amorphous solid water produced by cryosectioning of crystalline ice at 113 K.
    AL-Amoudi A; Dubochet J; Studer D
    J Microsc; 2002 Aug; 207(Pt 2):146-53. PubMed ID: 12180960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Measurement of Water States in Cryopreserved Cells Reveals Tolerance toward Ice Crystallization.
    Huebinger J; Han HM; Hofnagel O; Vetter IR; Bastiaens PI; Grabenbauer M
    Biophys J; 2016 Feb; 110(4):840-9. PubMed ID: 26541066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples.
    McDowall AW; Chang JJ; Freeman R; Lepault J; Walter CA; Dubochet J
    J Microsc; 1983 Jul; 131(Pt 1):1-9. PubMed ID: 6350598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryofixation and ultra-low-temperature freeze-drying as a preparative technique for TEM.
    Livesey SA; del Campo AA; McDowall AW; Stasny JT
    J Microsc; 1991 Feb; 161(Pt 2):205-15. PubMed ID: 2038030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation.
    Lima E; Chushkin Y; van der Linden P; Kim CU; Zontone F; Carpentier P; Gruner SM; Pernot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042713. PubMed ID: 25375529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-pressurized rapid freezing (SPRF): a novel cryofixation method for specimen preparation in electron microscopy.
    Leunissen JL; Yi H
    J Microsc; 2009 Jul; 235(1):25-35. PubMed ID: 19566624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freezing: facts and hypothesis.
    Dubochet J; Richter K; Roy HV; McDowall AW
    Scanning Microsc Suppl; 1991; 5(4):S11-5; discussion S15-6. PubMed ID: 1822020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observations on the behavior of vitreous ice at approximately 82 and approximately 12 K.
    Wright ER; Iancu CV; Tivol WF; Jensen GJ
    J Struct Biol; 2006 Mar; 153(3):241-52. PubMed ID: 16434212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large ice crystals in the nucleus of rapidly frozen liver cells.
    Bischof JC; Rubinsky B
    Cryobiology; 1993 Dec; 30(6):597-603. PubMed ID: 8306707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Powder X-ray diffraction observations of ice crystals formed from disaccharide solutions.
    Uchida T; Takeya S
    Phys Chem Chem Phys; 2010 Dec; 12(45):15034-9. PubMed ID: 20957238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryo-electron energy loss spectroscopy: observations on vitrified hydrated specimens and radiation damage.
    Leapman RD; Sun S
    Ultramicroscopy; 1995 Jul; 59(1-4):71-9. PubMed ID: 7571121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-situ integrity control of frozen-hydrated, vitreous lamellas prepared by the cryo-focused ion beam-scanning electron microscope.
    de Winter DA; Mesman RJ; Hayles MF; Schneijdenberg CT; Mathisen C; Post JA
    J Struct Biol; 2013 Jul; 183(1):11-8. PubMed ID: 23742839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of X-ray tomography to map crystalline and amorphous phases in frozen biomaterials.
    Bischof JC; Mahr B; Choi JH; Behling M; Mewes D
    Ann Biomed Eng; 2007 Feb; 35(2):292-304. PubMed ID: 17136446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Character, distribution and biological implications of ice crystallization in cryopreserved rabbit ovarian tissue revealed by cryo-scanning electron microscopy.
    Gosden RG; Yin H; Bodine RJ; Morris GJ
    Hum Reprod; 2010 Feb; 25(2):470-8. PubMed ID: 19933523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of ice crystallized from supercooled water.
    Malkin TL; Murray BJ; Brukhno AV; Anwar J; Salzmann CG
    Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1041-5. PubMed ID: 22232652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution electron microscopy of biological specimens in cubic ice.
    Cyrklaff M; Kühlbrandt W
    Ultramicroscopy; 1994 Aug; 55(2):141-53. PubMed ID: 7941098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron beam coater for reduction of charging in ice-embedded biological specimens using Ti(88)Si(12) alloy.
    Sherman MB; Chiu W
    Microsc Microanal; 2003 Dec; 9(6):566-73. PubMed ID: 14750991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-pressurized rapid freezing (SPRF) as a simple fixation method for cryo-electron microscopy of vitreous sections.
    Han HM; Huebinger J; Grabenbauer M
    J Struct Biol; 2012 May; 178(2):84-7. PubMed ID: 22508105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods of Preparing Nanoscale Vitreous Ice Needles for High-Resolution Cryogenic Characterization.
    Zhang S; Gervinskas G; Qiu S; Venugopal H; Marceau RKW; de Marco A; Li J; Fu J
    Nano Lett; 2022 Aug; 22(16):6501-6508. PubMed ID: 35926226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.