These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8160784)

  • 1. pHi determines rate of sodium transport in frog skin: results of a new method to determine pHi.
    Rick R
    Am J Physiol; 1994 Mar; 266(3 Pt 2):F367-74. PubMed ID: 8160784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of changes in extracellular potassium on intracellular pH in principal cells of frog skin.
    Lyall V; Belcher TS; Biber TU
    Am J Physiol; 1992 Oct; 263(4 Pt 2):F722-30. PubMed ID: 1415743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na+ transport and pH in principal cells of frog skin: effect of antidiuretic hormone.
    Lyall V; Belcher TS; Miller JH; Biber TU
    Am J Physiol; 1994 Jul; 267(1 Pt 2):R107-14. PubMed ID: 8048613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic control of intracellular ion concentrations in the frog skin epithelium.
    Rick R
    Miner Electrolyte Metab; 1989; 15(3):150-4. PubMed ID: 2542746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active transport and exchange diffusion of Cl across the isolated skin of Rana pipiens.
    Drewnowska K; Biber TU
    Am J Physiol; 1985 Sep; 249(3 Pt 2):F424-31. PubMed ID: 3876034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH in principal cells of frog skin (Rana pipiens): dependence on extracellular Na+.
    Drewnowska K; Cragoe EJ; Biber TU
    Am J Physiol; 1988 Nov; 255(5 Pt 2):F930-5. PubMed ID: 2847551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Na+/H+ exchange in the control of intracellular pH and cell membrane conductances in frog skin epithelium.
    Harvey BJ; Ehrenfeld J
    J Gen Physiol; 1988 Dec; 92(6):793-810. PubMed ID: 3265145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular pH regulation in fresh and cultured bovine corneal endothelium. II. Na+:HCO3- cotransport and Cl-/HCO3- exchange.
    Bonanno JA; Giasson C
    Invest Ophthalmol Vis Sci; 1992 Oct; 33(11):3068-79. PubMed ID: 1399410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of intracellular Na+ concentration on apical and basolateral membrane Na+ influx in frog skin.
    Stoddard JS; Helman SI
    Am J Physiol; 1985 Nov; 249(5 Pt 2):F662-71. PubMed ID: 3877468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na+ channel blockers inhibit voltage-dependent intracellular pH changes in principal cells of frog (Rana pipiens) skin.
    Lyall V; Belcher TS; Biber TU
    Comp Biochem Physiol Comp Physiol; 1993 Jul; 105(3):503-11. PubMed ID: 8101781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular ion concentrations in the isolated frog skin epithelium: evidence for different types of mitochondria-rich cells.
    Rick R
    J Membr Biol; 1992 May; 127(3):227-36. PubMed ID: 1495088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular pH regulation in rabbit S3 proximal tubule: basolateral Cl-HCO3 exchange and Na-HCO3 cotransport.
    Nakhoul NL; Chen LK; Boron WF
    Am J Physiol; 1990 Feb; 258(2 Pt 2):F371-81. PubMed ID: 2155541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH in principal cells of frog skin (Rana pipiens): effects of amiloride and potential.
    Drewnowska K; Biber TU
    Am J Physiol; 1988 Nov; 255(5 Pt 2):F922-9. PubMed ID: 2847550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular pH regulation in fresh and cultured bovine corneal endothelium. I. Na+/H+ exchange in the absence and presence of HCO3-.
    Bonanno JA; Giasson C
    Invest Ophthalmol Vis Sci; 1992 Oct; 33(11):3058-67. PubMed ID: 1328110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of mitochondria-rich cells in sodium transport across amphibian skin.
    Nagel W; Dörge A
    Pflugers Arch; 1996; 433(1-2):146-52. PubMed ID: 9019715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of epithelial electrolyte transport by marker ions.
    Dörge A; Rick R
    Scanning Microsc; 1990 Jun; 4(2):449-53; discussion 453-5. PubMed ID: 2402613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term bromide uptake in skins of Rana pipiens.
    Rick R
    J Membr Biol; 1994 Mar; 138(2):171-9. PubMed ID: 7815454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na+ transport pathways in secretory acinar cells: membrane cross talk mediated by [Cl-]i.
    Robertson MA; Foskett JK
    Am J Physiol; 1994 Jul; 267(1 Pt 1):C146-56. PubMed ID: 8048476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pHi regulation in frog retinal pigment epithelium: two apical membrane mechanisms.
    Lin H; Miller SS
    Am J Physiol; 1991 Jul; 261(1 Pt 1):C132-42. PubMed ID: 1858851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microelectrode study of intracellular pH in frog skin: dependence on serosal chloride.
    Duffey ME; Kelepouris E; Peterson-Yantorno K; Civan MM
    Am J Physiol; 1986 Sep; 251(3 Pt 2):F468-74. PubMed ID: 3489414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.