BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 8161195)

  • 1. Affinity isolation and characterization of cytochrome P450 102 (BM-3) from barbiturate-induced Bacillus megaterium.
    Black SD; Linger MH; Freck LC; Kazemi S; Galbraith JA
    Arch Biochem Biophys; 1994 Apr; 310(1):126-33. PubMed ID: 8161195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the domain structure of cytochrome P450 102 (BM-3): isolation and properties of a 45-kDa FAD/NADP domain.
    Black SD
    Biochem Biophys Res Commun; 1994 Aug; 203(1):162-8. PubMed ID: 8074651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium.
    Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW
    Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3.
    Kitazume T; Haines DC; Estabrook RW; Chen B; Peterson JA
    Biochemistry; 2007 Oct; 46(42):11892-901. PubMed ID: 17902705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imidazolyl carboxylic acids as mechanistic probes of flavocytochrome P-450 BM3.
    Noble MA; Quaroni L; Chumanov GD; Turner KL; Chapman SK; Hanzlik RP; Munro AW
    Biochemistry; 1998 Nov; 37(45):15799-807. PubMed ID: 9843385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of benzoate-para-hydroxylase, a cytochrome P450 (CYP53A1), from Aspergillus niger.
    Faber BW; van Gorcom RF; Duine JA
    Arch Biochem Biophys; 2001 Oct; 394(2):245-54. PubMed ID: 11594739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox control of the catalytic cycle of flavocytochrome P-450 BM3.
    Daff SN; Chapman SK; Turner KL; Holt RA; Govindaraj S; Poulos TL; Munro AW
    Biochemistry; 1997 Nov; 36(45):13816-23. PubMed ID: 9374858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of kinetic isotope effects to delineate the role of phenylalanine 87 in P450(BM-3).
    Rock DA; Boitano AE; Wahlstrom JL; Rock DA; Jones JP
    Bioorg Chem; 2002 Apr; 30(2):107-18. PubMed ID: 12020135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitation of FAD-dependent cytochrome P450 reductase activity by photoreduction.
    Hodgson AV; Strobel HW
    Anal Biochem; 1996 Dec; 243(1):154-7. PubMed ID: 8954538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic properties of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase.
    Axley MJ; Fairman R; Yanchunas J; Villafranca JJ; Robertson JG
    Biochemistry; 1997 Jan; 36(4):812-22. PubMed ID: 9020779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of the fatty acid hydroxylase activity of cytochrome P450BM-3 utilizing its functional domains.
    Sevrioukova I; Truan G; Peterson JA
    Arch Biochem Biophys; 1997 Apr; 340(2):231-8. PubMed ID: 9143326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the Insertion of a Glycine Residue into the Loop Spanning Residues 536-541 on the Semiquinone State and Redox Properties of the Flavin Mononucleotide-Binding Domain of Flavocytochrome P450BM-3 from Bacillus megaterium.
    Chen HC; Swenson RP
    Biochemistry; 2008 Dec; 47(52):13788-99. PubMed ID: 19055322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the interactions of cytochrome b5 with flavocytochrome P450 BM3 and its domains.
    Noble MA; Girvan HM; Smith SJ; Smith WE; Murataliev M; Guzov VM; Feyereisen R; Munro AW
    Drug Metab Rev; 2007; 39(2-3):599-617. PubMed ID: 17786641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of recombinant Bacillus megaterium cytochrome P-450 BM-3 and its two functional domains.
    Li HY; Darwish K; Poulos TL
    J Biol Chem; 1991 Jun; 266(18):11909-14. PubMed ID: 1904873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An appraisal of multiple NADPH binding-site models proposed for cytochrome P450 reductase, NO synthase, and related diflavin reductase systems.
    Daff S
    Biochemistry; 2004 Apr; 43(13):3929-32. PubMed ID: 15049700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P450BM-3: reduction by NADPH and sodium dithionite.
    Peterson JA; Boddupalli SS
    Arch Biochem Biophys; 1992 May; 294(2):654-61. PubMed ID: 1567220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.