BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8161222)

  • 1. Inhibition of luminol-enhanced chemiluminescence by reduced pterins.
    Shen RS
    Arch Biochem Biophys; 1994 Apr; 310(1):60-3. PubMed ID: 8161222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of monocyte luminol-dependent chemiluminescence by tetrahydrobiopterin, and the free radical oxidation of tetrahydrobiopterin, dihydrobiopterin and dihydroneopterin.
    Heales SJ; Blair JA; Meinschad C; Ziegler I
    Cell Biochem Funct; 1988 Jul; 6(3):191-5. PubMed ID: 3409479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage.
    Shirahata S; Kabayama S; Nakano M; Miura T; Kusumoto K; Gotoh M; Hayashi H; Otsubo K; Morisawa S; Katakura Y
    Biochem Biophys Res Commun; 1997 May; 234(1):269-74. PubMed ID: 9169001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Chemiluminescence in a stimulated polymorphonuclear leukocytes--luminol system: suppression by thiols].
    Murina MA; Roshchupkin DI; Belakina NS; Filippov SV
    Biofizika; 2005; 50(6):1100-4. PubMed ID: 16358790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative studies of the chemiluminescent horseradish peroxidase-catalysed peroxidation of acridan (GZ-11) and luminol reactions: effect of pH and scavengers of reactive oxygen species on the light intensity of these systems.
    Osman AM; Zomer G; Laane C; Hilhorst R
    Luminescence; 2000; 15(3):189-97. PubMed ID: 10862148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulatory role of nitric oxide on superoxide-dependent luminol chemiluminescence.
    Castro L; Alvarez MN; Radi R
    Arch Biochem Biophys; 1996 Sep; 333(1):179-88. PubMed ID: 8806769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemiluminescence study of active oxygen species produced by TiO2 photocatalytic reaction.
    Wu XZ; Lingyue M; Akiyama K
    Luminescence; 2005; 20(1):36-40. PubMed ID: 15685661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant properties of dipyridamole as assessed by chemiluminescence.
    Vargas F; Rivas C; Díaz Y; Contreras N; Silva A; Ojeda LE; Velásquez M; Fraile G
    Pharmazie; 2003 Nov; 58(11):817-23. PubMed ID: 14664339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach.
    Poljsak B; Gazdag Z; Jenko-Brinovec S; Fujs S; Pesti M; Bélagyi J; Plesnicar S; Raspor P
    J Appl Toxicol; 2005; 25(6):535-48. PubMed ID: 16092082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Luminol-enhanced chemiluminescence of rabbit polymorphonuclear leukocytes: the nature of oxidants that directly induce luminol oxidation].
    Roshchupkin DI; Belakina NS; Murina MA
    Biofizika; 2006; 51(1):99-107. PubMed ID: 16521559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans.
    Tian B; Wu Y; Sheng D; Zheng Z; Gao G; Hua Y
    Luminescence; 2004; 19(2):78-84. PubMed ID: 15098207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of luminol and lucigenin chemiluminescence by reducing organic compounds.
    Cui H; Meng R; Jiang H; Sun Y; Lin X
    Luminescence; 1999; 14(3):175-82. PubMed ID: 10423579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva fasciata.
    Shiu CT; Lee TM
    J Exp Bot; 2005 Nov; 56(421):2851-65. PubMed ID: 16157654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant properties of S-adenosyl-L-methionine in Fe(2+)-initiated oxidations.
    Caro AA; Cederbaum AI
    Free Radic Biol Med; 2004 May; 36(10):1303-16. PubMed ID: 15110395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of metals with peroxidase--mediated luminol-enhanced, chemiluminescence (PLmCL).
    Coteur G; Dubois P
    Luminescence; 2004; 19(5):283-6. PubMed ID: 15449349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention of cellular oxidative damage by an aqueous extract of Anoectochilus formosanus.
    Wang LF; Lin CM; Shih CM; Chen HJ; Su B; Tseng CC; Gau BB; Cheng KT
    Ann N Y Acad Sci; 2005 May; 1042():379-86. PubMed ID: 15965084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of luminol chemiluminescence of fMet-Leu-Phe-stimulated neutrophils by affecting dephosphorylation and the metabolism of phosphatidic acid.
    Arnhold J; Benard S; Kilian U; Reichl S; Schiller J; Arnold K
    Luminescence; 1999; 14(3):129-37. PubMed ID: 10423573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemiluminescence assay of reactive oxygen species in laryngeal cancer.
    Baglam T; Sari M; Mine Yazici Z; Yuksel M; Uneri C
    J Laryngol Otol; 2010 Oct; 124(10):1091-4. PubMed ID: 20482946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of xanthine oxidase by pterins.
    Wede I; Altindag ZZ; Widner B; Wachter H; Fuchs D
    Free Radic Res; 1998 Oct; 29(4):331-8. PubMed ID: 9860048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pteridine derivatives as modulators of oxidative stress.
    Oettl K; Reibnegger G
    Curr Drug Metab; 2002 Apr; 3(2):203-9. PubMed ID: 12003351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.