BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 8161659)

  • 1. Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture.
    Mikos AG; Lyman MD; Freed LE; Langer R
    Biomaterials; 1994 Jan; 15(1):55-8. PubMed ID: 8161659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates.
    Chen G; Ushida T; Tateishi T
    Biomaterials; 2001 Sep; 22(18):2563-7. PubMed ID: 11516089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple and robust method for pre-wetting poly (lactic-co-glycolic) acid microspheres.
    Wright B; Parmar N; Bozec L; Aguayo SD; Day RM
    J Biomater Appl; 2015 Aug; 30(2):147-59. PubMed ID: 25791685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of cylinder-shaped porous sponges of poly(L-lactic acid), poly(DL-lactic-co-glycolic acid), and poly(ε-caprolactone).
    He X; Kawazoe N; Chen G
    Biomed Res Int; 2014; 2014():106082. PubMed ID: 24719843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology.
    Zhang R; Ma PX
    J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents.
    Mooney DJ; Baldwin DF; Suh NP; Vacanti JP; Langer R
    Biomaterials; 1996 Jul; 17(14):1417-22. PubMed ID: 8830969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery.
    Ishaug-Riley SL; Crane GM; Gurlek A; Miller MJ; Yasko AW; Yaszemski MJ; Mikos AG
    J Biomed Mater Res; 1997 Jul; 36(1):1-8. PubMed ID: 9212383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration.
    Thomson RC; Yaszemski MJ; Powers JM; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1935-43. PubMed ID: 9863527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilized polyglycolic acid fibre-based tubes for tissue engineering.
    Mooney DJ; Mazzoni CL; Breuer C; McNamara K; Hern D; Vacanti JP; Langer R
    Biomaterials; 1996 Jan; 17(2):115-24. PubMed ID: 8624388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved biocompatibility of poly(lactic-co-glycolic acid) orv and poly-L-lactic acid blended with nanoparticulate amorphous calcium phosphate in vascular stent applications.
    Zheng X; Wang Y; Lan Z; Lyu Y; Feng G; Zhang Y; Tagusari S; Kislauskis E; Robich MP; McCarthy S; Sellke FW; Laham R; Jiang X; Gu WW; Wu T
    J Biomed Nanotechnol; 2014 Jun; 10(6):900-10. PubMed ID: 24749387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of liver-specific functions by rat hepatocytes seeded in treated poly(lactic-co-glycolic) acid biodegradable foams.
    Hasirci V; Berthiaume F; Bondre SP; Gresser JD; Trantolo DJ; Toner M; Wise DL
    Tissue Eng; 2001 Aug; 7(4):385-94. PubMed ID: 11506728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Wet-state" mechanical properties of three-dimensional polyester porous scaffolds.
    Wu L; Zhang J; Jing D; Ding J
    J Biomed Mater Res A; 2006 Feb; 76(2):264-71. PubMed ID: 16265648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(DL-lactic-co-glycolic acid) sponge hybridized with collagen microsponges and deposited apatite particulates.
    Chen G; Ushida T; Tateishi T
    J Biomed Mater Res; 2001 Oct; 57(1):8-14. PubMed ID: 11416843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method.
    Nam YS; Park TG
    Biomaterials; 1999 Oct; 20(19):1783-90. PubMed ID: 10509188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds.
    Ishaug SL; Crane GM; Miller MJ; Yasko AW; Yaszemski MJ; Mikos AG
    J Biomed Mater Res; 1997 Jul; 36(1):17-28. PubMed ID: 9212385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers.
    Ishaug-Riley SL; Crane-Kruger GM; Yaszemski MJ; Mikos AG
    Biomaterials; 1998 Aug; 19(15):1405-12. PubMed ID: 9758040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroporous polymer foams by hydrocarbon templating.
    Shastri VP; Martin I; Langer R
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):1970-5. PubMed ID: 10696111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal pigment epithelium cell culture on thin biodegradable poly(DL-lactic-co-glycolic acid) films.
    Lu L; Garcia CA; Mikos AG
    J Biomater Sci Polym Ed; 1998; 9(11):1187-205. PubMed ID: 9860180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.