These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8161686)

  • 1. Conductance mutations of the nicotinic acetylcholine receptor do not act by a simple electrostatic mechanism.
    Kienker P; Tomaselli G; Jurman M; Yellen G
    Biophys J; 1994 Feb; 66(2 Pt 1):325-34. PubMed ID: 8161686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General continuum theory for multiion channel. II. Application to acetylcholine channel.
    Levitt DG
    Biophys J; 1991 Feb; 59(2):278-88. PubMed ID: 1706950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore size and negative charge as structural determinants of permeability in the Torpedo nicotinic acetylcholine receptor channel.
    Wang F; Imoto K
    Proc Biol Sci; 1992 Oct; 250(1327):11-7. PubMed ID: 1281328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic interactions regulate desensitization of the nicotinic acetylcholine receptor.
    Song XZ; Pedersen SE
    Biophys J; 2000 Mar; 78(3):1324-34. PubMed ID: 10692319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor.
    Bertrand D; Galzi JL; Devillers-ThiƩry A; Bertrand S; Changeux JP
    Proc Natl Acad Sci U S A; 1993 Aug; 90(15):6971-5. PubMed ID: 7688468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation permeability and cation-anion interactions in a mutant GABA-gated chloride channel from Drosophila.
    Wang CT; Zhang HG; Rocheleau TA; ffrench-Constant RH; Jackson MB
    Biophys J; 1999 Aug; 77(2):691-700. PubMed ID: 10423418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotinic acetylcholine receptor channel electrostatics determined by diffusion-enhanced luminescence energy transfer.
    Meltzer RH; Lurtz MM; Wensel TG; Pedersen SE
    Biophys J; 2006 Aug; 91(4):1315-24. PubMed ID: 16751249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding-site cysteines with charged methanethiosulfonates.
    Stauffer DA; Karlin A
    Biochemistry; 1994 Jun; 33(22):6840-9. PubMed ID: 8204619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of Na(+) and K(+) in the pore of cyclic nucleotide-gated channels.
    Gamel K; Torre V
    Biophys J; 2000 Nov; 79(5):2475-93. PubMed ID: 11053124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inorganic, monovalent cations compete with agonists for the transmitter binding site of nicotinic acetylcholine receptors.
    Akk G; Auerbach A
    Biophys J; 1996 Jun; 70(6):2652-8. PubMed ID: 8744302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling ion permeation through batrachotoxin-modified Na+ channels from rat skeletal muscle with a multi-ion pore.
    Ravindran A; Kwiecinski H; Alvarez O; Eisenman G; Moczydlowski E
    Biophys J; 1992 Feb; 61(2):494-508. PubMed ID: 1312366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature and ionic strength dependence of quinacrine binding and quinacrine displacement elicited by high concentrations of agonists on the nicotinic acetylcholine receptor.
    Arias HR
    Arch Biochem Biophys; 1996 Sep; 333(1):1-11. PubMed ID: 8806747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of point mutations on energy profiles in a model of the nicotinic acetylcholine receptor (AChR) channel.
    Furois-Corbin S; Pullman A
    Biophys Chem; 1991 Feb; 39(2):153-9. PubMed ID: 2059665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Threonine in the selectivity filter of the acetylcholine receptor channel.
    Villarroel A; Sakmann B
    Biophys J; 1992 Apr; 62(1):196-205; discussion 205-8. PubMed ID: 1376167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate substitution in repeat IV alters divalent and monovalent cation permeation in the heart Ca2+ channel.
    Parent L; Gopalakrishnan M
    Biophys J; 1995 Nov; 69(5):1801-13. PubMed ID: 8580323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic tuning of ion conductance in potassium channels.
    Nimigean CM; Chappie JS; Miller C
    Biochemistry; 2003 Aug; 42(31):9263-8. PubMed ID: 12899612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The P-region and S6 of Kv3.1 contribute to the formation of the ion conduction pathway.
    Aiyar J; Nguyen AN; Chandy KG; Grissmer S
    Biophys J; 1994 Dec; 67(6):2261-4. PubMed ID: 7696467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of divalent cation-binding site in the pore of a small conductance Ca(2+)-activated K(+) channel and its role in determining current-voltage relationship.
    Soh H; Park CS
    Biophys J; 2002 Nov; 83(5):2528-38. PubMed ID: 12414687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying K+ channel to K(+)-selective permeation.
    Reuveny E; Jan YN; Jan LY
    Biophys J; 1996 Feb; 70(2):754-61. PubMed ID: 8789092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site.
    Shimomura M; Yokota M; Ihara M; Akamatsu M; Sattelle DB; Matsuda K
    Mol Pharmacol; 2006 Oct; 70(4):1255-63. PubMed ID: 16868180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.