BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 8161687)

  • 1. The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: de novo design of an idealized leader peptidase cleavage site.
    Schneider G; Wrede P
    Biophys J; 1994 Feb; 66(2 Pt 1):335-44. PubMed ID: 8161687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide design aided by neural networks: biological activity of artificial signal peptidase I cleavage sites.
    Wrede P; Landt O; Klages S; Fatemi A; Hahn U; Schneider G
    Biochemistry; 1998 Mar; 37(11):3588-93. PubMed ID: 9530285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial neural networks and simulated molecular evolution are potential tools for sequence-oriented protein design.
    Schneider G; Schuchhardt J; Wrede P
    Comput Appl Biosci; 1994 Dec; 10(6):635-45. PubMed ID: 7704662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A de novo designed signal peptide cleavage cassette functions in vivo.
    Nilsson I; von Heijne G
    J Biol Chem; 1991 Feb; 266(6):3408-10. PubMed ID: 1995603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide design in machina: development of artificial mitochondrial protein precursor cleavage sites by simulated molecular evolution.
    Schneider G; Schuchhardt J; Wrede P
    Biophys J; 1995 Feb; 68(2):434-47. PubMed ID: 7696497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal peptidase I processed secretory signal sequences: Selection for and against specific amino acids at the second position of mature protein.
    Zalucki YM; Jennings MP
    Biochem Biophys Res Commun; 2017 Feb; 483(3):972-977. PubMed ID: 28088521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of site-directed mutagenesis to define the limits of sequence variation tolerated for processing of the M13 procoat protein by the Escherichia coli leader peptidase.
    Shen LM; Lee JI; Cheng SY; Jutte H; Kuhn A; Dalbey RE
    Biochemistry; 1991 Dec; 30(51):11775-81. PubMed ID: 1751494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of artificial neural filters for pattern recognition in protein sequences.
    Schneider G; Wrede P
    J Mol Evol; 1993 Jun; 36(6):586-95. PubMed ID: 8350352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of cleavage-site patterns in protein precursor sequences with a perceptron-type neural network.
    Schneider G; Röhlk S; Wrede P
    Biochem Biophys Res Commun; 1993 Jul; 194(2):951-9. PubMed ID: 8343174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leader peptidase.
    Dalbey RE
    Mol Microbiol; 1991 Dec; 5(12):2855-60. PubMed ID: 1809829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and sequence specificity of processing of prepilin by PilD, the type IV leader peptidase of Pseudomonas aeruginosa.
    Strom MS; Lory S
    J Bacteriol; 1992 Nov; 174(22):7345-51. PubMed ID: 1429457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A signal peptide with a proline next to the cleavage site inhibits leader peptidase when present in a sec-independent protein.
    Nilsson I; von Heijne G
    FEBS Lett; 1992 Mar; 299(3):243-6. PubMed ID: 1544500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of simple fitness landscapes for peptides by artificial neural filter systems.
    Schneider G; Schuchhardt J; Wrede P
    Biol Cybern; 1995 Aug; 73(3):245-54. PubMed ID: 7548312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope.
    Wolfe PB; Wickner W; Goodman JM
    J Biol Chem; 1983 Oct; 258(19):12073-80. PubMed ID: 6311837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli leader peptidase: production of an active form lacking a requirement for detergent and development of peptide substrates.
    Kuo DW; Chan HK; Wilson CJ; Griffin PR; Williams H; Knight WB
    Arch Biochem Biophys; 1993 Jun; 303(2):274-80. PubMed ID: 8512314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that the catalytic activity of prokaryote leader peptidase depends upon the operation of a serine-lysine catalytic dyad.
    Black MT
    J Bacteriol; 1993 Aug; 175(16):4957-61. PubMed ID: 8394311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an internally quenched fluorescent substrate for Escherichia coli leader peptidase.
    Zhong W; Benkovic SJ
    Anal Biochem; 1998 Jan; 255(1):66-73. PubMed ID: 9448843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional model for the membrane domain of Escherichia coli leader peptidase based on disulfide mapping.
    Whitley P; Nilsson L; von Heijne G
    Biochemistry; 1993 Aug; 32(33):8534-9. PubMed ID: 8357800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of purified Escherichia coli leader peptidase by the leader (signal) peptide of bacteriophage M13 procoat.
    Wickner W; Moore K; Dibb N; Geissert D; Rice M
    J Bacteriol; 1987 Aug; 169(8):3821-2. PubMed ID: 3301818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region.
    Karamyshev AL; Karamysheva ZN; Kajava AV; Ksenzenko VN; Nesmeyanova MA
    J Mol Biol; 1998 Apr; 277(4):859-70. PubMed ID: 9545377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.