These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 8161706)

  • 1. The osmotic rupture hypothesis of intracellular freezing injury.
    Muldrew K; McGann LE
    Biophys J; 1994 Feb; 66(2 Pt 1):532-41. PubMed ID: 8161706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane damage occurs during the formation of intracellular ice.
    Acker JP; McGann LE
    Cryo Letters; 2001; 22(4):241-54. PubMed ID: 11788865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The possible influence of osmotic poration on cell membrane water permeability.
    Muldrew K; Schachar J; Cheng P; Rempel C; Liang S; Wan R
    Cryobiology; 2009 Feb; 58(1):62-68. PubMed ID: 19017529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of intracellular ice formation.
    Muldrew K; McGann LE
    Biophys J; 1990 Mar; 57(3):525-32. PubMed ID: 2306499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane hydration correlates to cellular biophysics during freezing in mammalian cells.
    Balasubramanian SK; Wolkers WF; Bischof JC
    Biochim Biophys Acta; 2009 May; 1788(5):945-53. PubMed ID: 19233120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extra- and intracellular ice formation in mouse oocytes.
    Mazur P; Seki S; Pinn IL; Kleinhans FW; Edashige K
    Cryobiology; 2005 Aug; 51(1):29-53. PubMed ID: 15975568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The temperature of intracellular ice formation in mouse oocytes vs. the unfrozen fraction at that temperature.
    Mazur P; Pinn IL; Kleinhans FW
    Cryobiology; 2007 Apr; 54(2):223-33. PubMed ID: 17379206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KINETICS OF WATER LOSS FROM CELLS AT SUBZERO TEMPERATURES AND THE LIKELIHOOD OF INTRACELLULAR FREEZING.
    MAZUR P
    J Gen Physiol; 1963 Nov; 47(2):347-69. PubMed ID: 14085017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransport phenomena in freezing mammalian oocytes.
    Yang G; Veres M; Szalai G; Zhang A; Xu LX; He X
    Ann Biomed Eng; 2011 Jan; 39(1):580-91. PubMed ID: 20848315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of water transport and intracellular ice formation for freezing of endothelial cells.
    Zhao G; Xu Y; Ding WP; Hu MB
    Cryo Letters; 2013; 34(1):40-51. PubMed ID: 23435709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intercellular ice propagation: experimental evidence for ice growth through membrane pores.
    Acker JP; Elliott JA; McGann LE
    Biophys J; 2001 Sep; 81(3):1389-97. PubMed ID: 11509353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular response of mouse oocytes to freezing stress: prediction of intracellular ice formation.
    Toner M; Cravalho EG; Karel M
    J Biomech Eng; 1993 May; 115(2):169-74. PubMed ID: 8326722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell dehydration during tissue freezing interpreted as Bradley isotherm desorption of structured cell water.
    Cope FW
    Physiol Chem Phys; 1982; 14(5):415-9. PubMed ID: 7186637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subzero water permeability parameters of mouse spermatozoa in the presence of extracellular ice and cryoprotective agents.
    Devireddy RV; Swanlund DJ; Roberts KP; Bischof JC
    Biol Reprod; 1999 Sep; 61(3):764-75. PubMed ID: 10456855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of extracellular ice and cryoprotective agents on the water permeability parameters of human sperm plasma membrane during freezing.
    Devireddy RV; Swanlund DJ; Roberts KP; Pryor JL; Bischof JC
    Hum Reprod; 2000 May; 15(5):1125-35. PubMed ID: 10783365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extra- and intra-cellular ice formation in Stage I and II Xenopus laevis oocytes.
    Guenther JF; Seki S; Kleinhans FW; Edashige K; Roberts DM; Mazur P
    Cryobiology; 2006 Jun; 52(3):401-16. PubMed ID: 16600207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-cell contact affects membrane integrity after intracellular freezing.
    Acker JP; McGann LE
    Cryobiology; 2000 Feb; 40(1):54-63. PubMed ID: 10679150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The peculiarities of water crystallization and ice melting processes in the roots of one-year plants (Plantago major L.).
    Bakradze N; Kiziria E; Sokhadze V; Gogichaishvili S
    Cryo Letters; 2008; 29(3):217-28. PubMed ID: 18754062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The determination of membrane permeability coefficients of canine pancreatic islet cells and their application to islet cryopreservation.
    Liu J; Zieger MA; Lakey JR; Woods EJ; Critser JK
    Cryobiology; 1997 Aug; 35(1):1-13. PubMed ID: 9245505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.