These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8161871)

  • 21. Accuracy and clinical performance of a continuous intra-arterial blood-gas monitoring system during thoracoscopic surgery.
    Zollinger A; Spahn DR; Singer T; Zalunardo MP; Stoehr S; Weder W; Pasch T
    Br J Anaesth; 1997 Jul; 79(1):47-52. PubMed ID: 9301388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The i-STAT analyzer. A new, hand-held device for the bedside determination of hematocrit, blood gases, and electrolytes].
    Schneider J; Dudziak R; Westphal K; Vettermann J
    Anaesthesist; 1997 Aug; 46(8):704-14. PubMed ID: 9382209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The measure of treatment agreement between portable and laboratory blood gas measurements in guiding protocol-driven ventilator management.
    Thomas FO; Hoffman TL; Handrahan DL; Crapo RO; Snow G
    J Trauma; 2009 Aug; 67(2):303-13; discussion 313-4. PubMed ID: 19667883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of the i-STAT point-of-care analyzer in critically ill adult patients.
    Steinfelder-Visscher J; Teerenstra S; Gunnewiek JM; Weerwind PW
    J Extra Corpor Technol; 2008 Mar; 40(1):57-60. PubMed ID: 18389666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hand-held blood gas analyzer is accurate in the critical care setting.
    Zaloga GP; Roberts PR; Black K; Santamauro JT; Klase E; Suleiman M
    Crit Care Med; 1996 Jun; 24(6):957-62. PubMed ID: 8681598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clinical evaluation of the new BMU 40 in-line blood analysis monitor.
    Schaarschmidt J; Seeburger J; Borger MA; Grosse FO; Kraemer K; Mohr FW
    Perfusion; 2009 Jul; 24(4):277-86. PubMed ID: 19880664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical assessment of a continuous intraarterial blood gas monitoring system.
    Uchida T; Makita K; Tsunoda Y; Toyooka H; Amaha K
    Can J Anaesth; 1994 Jan; 41(1):64-70. PubMed ID: 8111948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous intra-arterial blood gas monitoring. A clinical experience.
    Paolillo G; Tosoni A; Mariani MA; Venturino M
    Minerva Anestesiol; 1994; 60(7-8):355-9. PubMed ID: 7800182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous measurement of blood gases using a combined electrochemical and spectrophotometric sensor.
    Venkatesh B; Clutton-Brock TH; Hendry SP
    J Med Eng Technol; 1994; 18(5):165-8. PubMed ID: 7776356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of a fiberoptic blood gas monitor in neonates with congenital heart disease.
    Raake JL; Taeed R; Manning P; Pearl J; Schwartz SM; Nelson DP
    Respir Care; 2000 Sep; 45(9):1105-12. PubMed ID: 10980102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring of CO2 exchange during cardiopulmonary bypass: the effect of oxygenator design on the applicability of capnometry.
    Aittomäki J
    Perfusion; 1993; 8(4):337-44. PubMed ID: 10171988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Haematocrit measurements during cardiopulmonary bypass surgery: comparison of three stat methods with a blood cell counter.
    al-Odeh A; Varga ZA; Angelin GD
    Perfusion; 1994 Mar; 9(2):127-34. PubMed ID: 7919598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noninvasive, near infrared spectroscopic-measured muscle pH and PO2 indicate tissue perfusion for cardiac surgical patients undergoing cardiopulmonary bypass.
    Soller BR; Idwasi PO; Balaguer J; Levin S; Simsir SA; Vander Salm TJ; Collette H; Heard SO
    Crit Care Med; 2003 Sep; 31(9):2324-31. PubMed ID: 14501963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasibility and precision of subcutaneous continuous glucose monitoring in patients undergoing CABG surgery.
    Aust H; Dinges G; Nardi-Hiebl S; Koch T; Lattermann R; Schricker T; Eberhart LH
    J Cardiothorac Vasc Anesth; 2014 Oct; 28(5):1264-72. PubMed ID: 25037649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical assessment of a flow-through fluorometric blood gas monitor.
    Bashein G; Pino JA; Nessly ML; Kenny MA; Davis KB; Hornbein TF; Ivey TD
    J Clin Monit; 1988 Jul; 4(3):195-203. PubMed ID: 3264851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Saline PCO2 is an important source of error in the assessment of gastric intramucosal pH.
    Takala J; Parviainen I; Siloaho M; Ruokonen E; Hämäläinen E
    Crit Care Med; 1994 Nov; 22(11):1877-9. PubMed ID: 7956295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of an on-demand, ex vivo bedside blood gas monitor on pulmonary artery blood gas determinations.
    Franklin ML; Peruzzi WT; Moen SG; Shapiro BA
    Anesth Analg; 1996 Sep; 83(3):500-4. PubMed ID: 8780270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical comparisons of continuous venous oxygen saturation and hematocrit monitors in pediatric surgery.
    Bennett D; Burnside J; Langwell J; Beckley PD
    J Extra Corpor Technol; 1993; 25(4):140-4. PubMed ID: 10172011
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical evaluation of the ABL-77 for point-of-care analysis in the cardiovascular operating room.
    Prichard JS; French JS; Alvar N
    J Extra Corpor Technol; 2006 Jun; 38(2):128-33. PubMed ID: 16921685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro assessment of a flow-through fluorometric blood gas monitor.
    Pino JA; Bashein G; Kenny MA
    J Clin Monit; 1988 Jul; 4(3):186-94. PubMed ID: 3210067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.