These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8162195)

  • 1. [An ecologic hygiene assessment of the microbiological processes in soil contaminated with sulfonol and lead].
    Erusalimskaia LF; Mudryĭ IV; Grigor'eva LV; Debrivnaia IE
    Mikrobiol Z; 1993; 55(5):13-21. PubMed ID: 8162195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Ecological and hygienic evaluation of microbiological process in the soil contaminated by anion surfactants and heavy metals].
    Mudryĭ IV
    Gig Sanit; 2002; (1):22-5. PubMed ID: 11899862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The homeostasis of the microbial communities in soils polluted by heavy metals].
    Andreiuk EI; Iutinskaia GA; Petrusha ZV
    Mikrobiol Z; 1999; 61(6):15-21. PubMed ID: 10733279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [An experimental study of a microbiological index in the complex setting of standards for lead, copper and zinc in the soil].
    Balabanov Ts; Chipilska L
    Probl Khig; 1997; 22():17-24. PubMed ID: 10202766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of bacterial insecticides on soil self-purification processes and on the survival in the soil of pathogenic enterobacteria with the example of Salmonella typhimurium].
    Korolik VV
    Gig Sanit; 1979 Sep; (9):78-80. PubMed ID: 387535
    [No Abstract]   [Full Text] [Related]  

  • 6. Experimental study on effect of anion surfactant on degradation rate of aldicarb in soil.
    Liu G; Dai S; Qian Y; Gan Q
    J Environ Sci Health B; 2003 Jul; 38(4):405-16. PubMed ID: 12856923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study.
    Trindade PV; Sobral LG; Rizzo AC; Leite SG; Soriano AU
    Chemosphere; 2005 Jan; 58(4):515-22. PubMed ID: 15620743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field investigations on the survival of Escherichia coli and presence of other enteric micro-organisms in biosolids-amended agricultural soil.
    Lang NL; Bellett-Travers MD; Smith SR
    J Appl Microbiol; 2007 Nov; 103(5):1868-82. PubMed ID: 17916161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Migration of sulfonol, lead, and ammonium nitrate from soil into ground waters].
    Voloshchenko OI; Mudryĭ IV; Golenkova LG; Raetskaia EV; Nepokupnaia EI; Maĭstrenko ZIu
    Gig Sanit; 1997; (4):17-9. PubMed ID: 9378313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial activity of soil-bound antibiotics.
    Chander Y; Kumar K; Goyal SM; Gupta SC
    J Environ Qual; 2005; 34(6):1952-7. PubMed ID: 16221813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils.
    Turpeinen R; Kairesalo T; Häggblom MM
    FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of antimony on the microbial growth and the activities of soil enzymes.
    An YJ; Kim M
    Chemosphere; 2009 Feb; 74(5):654-9. PubMed ID: 19036401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity assessment of contaminated soils from an antitank firing range.
    Robidoux PY; Gong P; Sarrazin M; Bardai G; Paquet L; Hawari J; Dubois C; Sunahara GI
    Ecotoxicol Environ Saf; 2004 Jul; 58(3):300-13. PubMed ID: 15223256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity.
    Owsianiak M; Szulc A; Chrzanowski Ł; Cyplik P; Bogacki M; Olejnik-Schmidt AK; Heipieper HJ
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):545-53. PubMed ID: 19471922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of different microbial biomass and activity measurement methods in metal-contaminated soils.
    Barajas-Aceves M
    Bioresour Technol; 2005 Aug; 96(12):1405-14. PubMed ID: 15792589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of insecticide fenamiphos on soil microbial activities in Australian and Ecuadorean soils.
    Cáceres TP; He W; Megharaj M; Naidu R
    J Environ Sci Health B; 2009 Jan; 44(1):13-7. PubMed ID: 19089710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Probability approach to evaluating the complex (inhalational and percutaneous) action of sulfonol chloride on the body].
    Voloshchenko OI; Mudryĭ IV; Svatkov VI
    Gig Sanit; 1983 Aug; (8):42-5. PubMed ID: 6354859
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of soil organic matter (SOM) and soil texture on the fatality of indigenous microorganisms in intergrated ozonation and biodegradation.
    Jung H; Sohn KD; Neppolian B; Choi H
    J Hazard Mater; 2008 Feb; 150(3):809-17. PubMed ID: 17597294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of biologic gasification potential of arsenic from contaminated natural soil by enumeration of arsenic methylating bacteria.
    Islam SM; Fukushi K; Yamamoto K; Saha GC
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):332-8. PubMed ID: 17354031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.