BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8162861)

  • 1. Regulation of oligodendrocyte differentiation: a role for retinoic acid in the spinal cord.
    Noll E; Miller RH
    Development; 1994 Mar; 120(3):649-60. PubMed ID: 8162861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and differentiation of A2B5+ glial precursors in the developing rat spinal cord.
    Fok-Seang J; Miller RH
    J Neurosci Res; 1994 Feb; 37(2):219-35. PubMed ID: 8151730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal cord oligodendrocytes develop from a limited number of migratory highly proliferative precursors.
    Miller RH; Payne J; Milner L; Zhang H; Orentas DM
    J Neurosci Res; 1997 Oct; 50(2):157-68. PubMed ID: 9373026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early development and dispersal of oligodendrocyte precursors in the embryonic chick spinal cord.
    Ono K; Bansal R; Payne J; Rutishauser U; Miller RH
    Development; 1995 Jun; 121(6):1743-54. PubMed ID: 7600990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct modes of migration position oligodendrocyte precursors for localized cell division in the developing spinal cord.
    Tsai HH; Macklin WB; Miller RH
    J Neurosci Res; 2009 Nov; 87(15):3320-30. PubMed ID: 19301427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration.
    Tsai HH; Frost E; To V; Robinson S; Ffrench-Constant C; Geertman R; Ransohoff RM; Miller RH
    Cell; 2002 Aug; 110(3):373-83. PubMed ID: 12176324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligodendrocyte precursors originate at the ventral ventricular zone dorsal to the ventral midline region in the embryonic rat spinal cord.
    Noll E; Miller RH
    Development; 1993 Jun; 118(2):563-73. PubMed ID: 8223279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glial cell mitogens bFGF and PDGF differentially regulate development of O4+GalC- oligodendrocyte progenitors.
    Gard AL; Pfeiffer SE
    Dev Biol; 1993 Oct; 159(2):618-30. PubMed ID: 8405684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional potential for oligodendrocyte generation in the rodent embryonic spinal cord following exposure to EGF and FGF-2.
    Chandran S; Svendsen C; Compston A; Scolding N
    Glia; 1998 Dec; 24(4):382-9. PubMed ID: 9814818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligodendrocyte-spinal cord explant co-culture: an in vitro model for the study of myelination.
    Chen Z; Ma Z; Wang Y; Li Y; Lü H; Fu S; Hang Q; Lu PH
    Brain Res; 2010 Jan; 1309():9-18. PubMed ID: 19879858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligodendrocytes and the control of myelination in vivo: new insights from the rat anterior medullary velum.
    Butt AM; Berry M
    J Neurosci Res; 2000 Feb; 59(4):477-88. PubMed ID: 10679786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential generation of oligodendrocytes from human and rodent embryonic spinal cord neural precursors.
    Chandran S; Compston A; Jauniaux E; Gilson J; Blakemore W; Svendsen C
    Glia; 2004 Sep; 47(4):314-24. PubMed ID: 15293229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NT-3 weakly stimulates proliferation of adult rat O1(-)O4(+) oligodendrocyte-lineage cells and increases oligodendrocyte myelination in vitro.
    Yan H; Wood PM
    J Neurosci Res; 2000 Nov; 62(3):329-35. PubMed ID: 11054801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of the early events when oligodendrocyte precursor cells are triggered to differentiate by thyroid hormone, retinoic acid, or PDGF withdrawal.
    Tokumoto YM; Durand B; Raff MC
    Dev Biol; 1999 Sep; 213(2):327-39. PubMed ID: 10479451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells derived from adult rat spinal cord: in vitro characteristics and response to PDGF, bFGF and NT-3.
    Engel U; Wolswijk G
    Glia; 1996 Jan; 16(1):16-26. PubMed ID: 8787770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligodendrocyte population dynamics and the role of PDGF in vivo.
    Calver AR; Hall AC; Yu WP; Walsh FS; Heath JK; Betsholtz C; Richardson WD
    Neuron; 1998 May; 20(5):869-82. PubMed ID: 9620692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord.
    Warf BC; Fok-Seang J; Miller RH
    J Neurosci; 1991 Aug; 11(8):2477-88. PubMed ID: 1869925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Netrin 1 mediates spinal cord oligodendrocyte precursor dispersal.
    Tsai HH; Tessier-Lavigne M; Miller RH
    Development; 2003 May; 130(10):2095-105. PubMed ID: 12668624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligodendrocyte progenitors in the embryonic spinal cord express DM-20.
    Dickinson PJ; Fanarraga ML; Griffiths IR; Barrie JM; Kyriakides E; Montague P
    Neuropathol Appl Neurobiol; 1996 Jun; 22(3):188-98. PubMed ID: 8804020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterning of spinal cord oligodendrocyte development by dorsally derived BMP4.
    Miller RH; Dinsio K; Wang R; Geertman R; Maier CE; Hall AK
    J Neurosci Res; 2004 Apr; 76(1):9-19. PubMed ID: 15048926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.