These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 8163485)
1. Mutational analysis of residues in the nucleotide binding domain of human terminal deoxynucleotidyl transferase. Yang B; Gathy KN; Coleman MS J Biol Chem; 1994 Apr; 269(16):11859-68. PubMed ID: 8163485 [TBL] [Abstract][Full Text] [Related]
2. Lack of functional significance of Cys227 and Cys234 in terminal deoxynucleotidyltransferase. Medin JA; Coleman MS J Biol Chem; 1992 Mar; 267(8):5199-201. PubMed ID: 1544903 [TBL] [Abstract][Full Text] [Related]
3. Structural Basis for a New Templated Activity by Terminal Deoxynucleotidyl Transferase: Implications for V(D)J Recombination. Loc'h J; Rosario S; Delarue M Structure; 2016 Sep; 24(9):1452-63. PubMed ID: 27499438 [TBL] [Abstract][Full Text] [Related]
4. Evolving a Thermostable Terminal Deoxynucleotidyl Transferase. Chua JPS; Go MK; Osothprarop T; Mcdonald S; Karabadzhak AG; Yew WS; Peisajovich S; Nirantar S ACS Synth Biol; 2020 Jul; 9(7):1725-1735. PubMed ID: 32497424 [TBL] [Abstract][Full Text] [Related]
5. Cytochrome b5 reductase: the roles of the recessive congenital methemoglobinemia mutants P144L, L148P, and R159*. Davis CA; Crowley LJ; Barber MJ Arch Biochem Biophys; 2004 Nov; 431(2):233-44. PubMed ID: 15488472 [TBL] [Abstract][Full Text] [Related]
6. 6-Pyruvoyl tetrahydropterin synthase, an enzyme with a novel type of active site involving both zinc binding and an intersubunit catalytic triad motif; site-directed mutagenesis of the proposed active center, characterization of the metal binding site and modelling of substrate binding. Bürgisser DM; Thöny B; Redweik U; Hess D; Heizmann CW; Huber R; Nar H J Mol Biol; 1995 Oct; 253(2):358-69. PubMed ID: 7563095 [TBL] [Abstract][Full Text] [Related]
7. Mutants affecting nucleotide recognition by T7 DNA polymerase. Donlin MJ; Johnson KA Biochemistry; 1994 Dec; 33(49):14908-17. PubMed ID: 7993917 [TBL] [Abstract][Full Text] [Related]
8. Investigating the role of conserved residue Asp134 in Escherichia coli ribonuclease HI by site-directed random mutagenesis. Haruki M; Noguchi E; Nakai C; Liu YY; Oobatake M; Itaya M; Kanaya S Eur J Biochem; 1994 Mar; 220(2):623-31. PubMed ID: 8125123 [TBL] [Abstract][Full Text] [Related]
9. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. Harris TK; Wu G; Massiah MA; Mildvan AS Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214 [TBL] [Abstract][Full Text] [Related]
10. Site-directed mutagenesis of cysteine residues in biliverdin reductase. Roles in substrate and cofactor binding. McCoubrey WK; Maines MD Eur J Biochem; 1994 Jun; 222(2):597-603. PubMed ID: 8020496 [TBL] [Abstract][Full Text] [Related]
11. Asp333, Asp495, and His523 form the catalytic triad of rat soluble epoxide hydrolase. Arand M; Wagner H; Oesch F J Biol Chem; 1996 Feb; 271(8):4223-9. PubMed ID: 8626766 [TBL] [Abstract][Full Text] [Related]
12. Structure-activity studies of human sterol carrier protein 2. Seedorf U; Scheek S; Engel T; Steif C; Hinz HJ; Assmann G J Biol Chem; 1994 Jan; 269(4):2613-8. PubMed ID: 8300590 [TBL] [Abstract][Full Text] [Related]
13. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase. Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997 [TBL] [Abstract][Full Text] [Related]
14. Phospholipase A2 engineering. Deletion of the C-terminus segment changes substrate specificity and uncouples calcium and substrate binding at the zwitterionic interface. Huang B; Yu BZ; Rogers J; Byeon IJ; Sekar K; Chen X; Sundaralingam M; Tsai MD; Jain MK Biochemistry; 1996 Sep; 35(37):12164-74. PubMed ID: 8810924 [TBL] [Abstract][Full Text] [Related]
15. Mutational studies of human DNA polymerase alpha. Identification of residues critical for deoxynucleotide binding and misinsertion fidelity of DNA synthesis. Dong Q; Copeland WC; Wang TS J Biol Chem; 1993 Nov; 268(32):24163-74. PubMed ID: 8226963 [TBL] [Abstract][Full Text] [Related]
16. Mutational analysis of residues in two consensus motifs in the active sites of cathepsin E. Liu J; Tsukuba T; Okamoto K; Ohishi M; Yamamoto K J Biochem; 2002 Sep; 132(3):493-9. PubMed ID: 12204120 [TBL] [Abstract][Full Text] [Related]
17. Mutational analysis of the human DNA polymerase alpha. The most conserved region in alpha-like DNA polymerases is involved in metal-specific catalysis. Copeland WC; Wang TS J Biol Chem; 1993 May; 268(15):11028-40. PubMed ID: 8496164 [TBL] [Abstract][Full Text] [Related]
18. Mutational analysis of active site residues of human adenosine deaminase. Bhaumik D; Medin J; Gathy K; Coleman MS J Biol Chem; 1993 Mar; 268(8):5464-70. PubMed ID: 8449909 [TBL] [Abstract][Full Text] [Related]
19. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties. Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892 [TBL] [Abstract][Full Text] [Related]
20. Cloning and identification of amino acid residues of human phospholipase C delta 1 essential for catalysis. Cheng HF; Jiang MJ; Chen CL; Liu SM; Wong LP; Lomasney JW; King K J Biol Chem; 1995 Mar; 270(10):5495-505. PubMed ID: 7890667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]