BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 8163506)

  • 1. The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression.
    Lee WS; Kanai Y; Wells RG; Hediger MA
    J Biol Chem; 1994 Apr; 269(16):12032-9. PubMed ID: 8163506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney.
    You G; Lee WS; Barros EJ; Kanai Y; Huo TL; Khawaja S; Wells RG; Nigam SK; Hediger MA
    J Biol Chem; 1995 Dec; 270(49):29365-71. PubMed ID: 7493971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning of a membrane-associated protein which modifies activity and properties of the Na(+)-D-glucose cotransporter.
    Veyhl M; Spangenberg J; PĆ¼schel B; Poppe R; Dekel C; Fritzsch G; Haase W; Koepsell H
    J Biol Chem; 1993 Nov; 268(33):25041-53. PubMed ID: 8227068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose.
    Kanai Y; Lee WS; You G; Brown D; Hediger MA
    J Clin Invest; 1994 Jan; 93(1):397-404. PubMed ID: 8282810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Na+/glucose cotransporter expression by protein kinases in Xenopus laevis oocytes.
    Hirsch JR; Loo DD; Wright EM
    J Biol Chem; 1996 Jun; 271(25):14740-6. PubMed ID: 8663046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium/D-glucose cotransporter charge movements involve polar residues.
    Panayotova-Heiermann M; Loo DD; Lostao MP; Wright EM
    J Biol Chem; 1994 Aug; 269(33):21016-20. PubMed ID: 8063719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein.
    Panayotova-Heiermann M; Loo DD; Kong CT; Lever JE; Wright EM
    J Biol Chem; 1996 Apr; 271(17):10029-34. PubMed ID: 8626557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Na+/glucose cotransporters.
    Wright EM; Hirsch JR; Loo DD; Zampighi GA
    J Exp Biol; 1997 Jan; 200(Pt 2):287-93. PubMed ID: 9050236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAAT1 is a low affinity Na+/glucose cotransporter and not an amino acid transporter. A reinterpretation.
    Mackenzie B; Panayotova-Heiermann M; Loo DD; Lever JE; Wright EM
    J Biol Chem; 1994 Sep; 269(36):22488-91. PubMed ID: 8077195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical characteristics of the pig kidney Na+/glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2.
    Mackenzie B; Loo DD; Panayotova-Heiermann M; Wright EM
    J Biol Chem; 1996 Dec; 271(51):32678-83. PubMed ID: 8955098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter.
    Panayotova-Heiermann M; Loo DD; Wright EM
    J Biol Chem; 1995 Nov; 270(45):27099-105. PubMed ID: 7592962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage and substrate dependence of the inverse transport mode of the rabbit Na(+)/glucose cotransporter (SGLT1).
    Sauer GA; Nagel G; Koepsell H; Bamberg E; Hartung K
    FEBS Lett; 2000 Mar; 469(1):98-100. PubMed ID: 10708764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carboxy-terminal vesicular stomatitis virus G protein-tagged intestinal Na+-dependent glucose cotransporter (SGLT1): maintenance of surface expression and global transport function with selective perturbation of transport kinetics and polarized expression.
    Turner JR; Lencer WI; Carlson S; Madara JL
    J Biol Chem; 1996 Mar; 271(13):7738-44. PubMed ID: 8631815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenylglucosides and the Na+/glucose cotransporter (SGLT1): analysis of interactions.
    Lostao MP; Hirayama BA; Loo DD; Wright EM
    J Membr Biol; 1994 Nov; 142(2):161-70. PubMed ID: 7884808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Five transmembrane helices form the sugar pathway through the Na+/glucose cotransporter.
    Panayotova-Heiermann M; Eskandari S; Turk E; Zampighi GA; Wright EM
    J Biol Chem; 1997 Aug; 272(33):20324-7. PubMed ID: 9252334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional studies of a chimeric protein containing portions of the Na(+)/glucose and Na(+)/myo-inositol cotransporters.
    Coady MJ; Jalal F; Bissonnette P; Cartier M; Wallendorff B; Lemay G; Lapointe J
    Biochim Biophys Acta; 2000 Jun; 1466(1-2):139-50. PubMed ID: 10825438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protons drive sugar transport through the Na+/glucose cotransporter (SGLT1).
    Hirayama BA; Loo DD; Wright EM
    J Biol Chem; 1994 Aug; 269(34):21407-10. PubMed ID: 8063771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic determination of the Na+: glucose coupling ratio for the human SGLT1 cotransporter.
    Chen XZ; Coady MJ; Jackson F; Berteloot A; Lapointe JY
    Biophys J; 1995 Dec; 69(6):2405-14. PubMed ID: 8599647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutralization of conservative charged transmembrane residues in the Na+/glucose cotransporter SGLT1.
    Panayotova-Heiermann M; Loo DD; Lam JT; Wright EM
    Biochemistry; 1998 Jul; 37(29):10522-8. PubMed ID: 9671524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of the Na+-D-glucose cotransporter SGLT1 in neurons.
    Poppe R; Karbach U; Gambaryan S; Wiesinger H; Lutzenburg M; Kraemer M; Witte OW; Koepsell H
    J Neurochem; 1997 Jul; 69(1):84-94. PubMed ID: 9202297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.