These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 8163547)

  • 21. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae.
    Donald KA; Hampton RY; Fritz IB
    Appl Environ Microbiol; 1997 Sep; 63(9):3341-4. PubMed ID: 9292983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct sterol and nonsterol signals for the regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase.
    Roitelman J; Simoni RD
    J Biol Chem; 1992 Dec; 267(35):25264-73. PubMed ID: 1460026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum.
    Roitelman J; Olender EH; Bar-Nun S; Dunn WA; Simoni RD
    J Cell Biol; 1992 Jun; 117(5):959-73. PubMed ID: 1374417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3-hydroxy-3-methylglutaryl coenzyme A reductase is sterol-dependently cleaved by cathepsin L-type cysteine protease in the isolated endoplasmic reticulum.
    Moriyama T; Wada M; Urade R; Kito M; Katunuma N; Ogawa T; Simoni RD
    Arch Biochem Biophys; 2001 Feb; 386(2):205-12. PubMed ID: 11368343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Underlying mechanisms for sterol-induced ubiquitination and ER-associated degradation of HMG CoA reductase.
    Johnson BM; DeBose-Boyd RA
    Semin Cell Dev Biol; 2018 Sep; 81():121-128. PubMed ID: 29107682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro analysis of Hrd1p-mediated retrotranslocation of its multispanning membrane substrate 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase.
    Garza RM; Sato BK; Hampton RY
    J Biol Chem; 2009 May; 284(22):14710-22. PubMed ID: 19324879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. INSIG: a broadly conserved transmembrane chaperone for sterol-sensing domain proteins.
    Flury I; Garza R; Shearer A; Rosen J; Cronin S; Hampton RY
    EMBO J; 2005 Nov; 24(22):3917-26. PubMed ID: 16270032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase.
    DeBose-Boyd RA
    Cell Res; 2008 Jun; 18(6):609-21. PubMed ID: 18504457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation of HMG-CoA reductase in vitro. Cleavage in the membrane domain by a membrane-bound cysteine protease.
    Moriyama T; Sather SK; McGee TP; Simoni RD
    J Biol Chem; 1998 Aug; 273(34):22037-43. PubMed ID: 9705346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in permeabilized cells.
    Meigs TE; Simoni RD
    J Biol Chem; 1992 Jul; 267(19):13547-52. PubMed ID: 1618856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An autonomous, but INSIG-modulated, role for the sterol sensing domain in mallostery-regulated ERAD of yeast HMG-CoA reductase.
    Wangeline MA; Hampton RY
    J Biol Chem; 2021; 296():100063. PubMed ID: 33184059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by mevalonate.
    Straka MS; Panini SR
    Arch Biochem Biophys; 1995 Feb; 317(1):235-43. PubMed ID: 7872789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The regulated degradation of a 3-hydroxy-3-methylglutaryl-coenzyme A reductase reporter construct occurs in the endoplasmic reticulum.
    Lecureux LW; Wattenberg BW
    J Cell Sci; 1994 Sep; 107 ( Pt 9)():2635-42. PubMed ID: 7844177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plant-derived monoterpenes suppress hamster kidney cell 3-hydroxy-3-methylglutaryl coenzyme a reductase synthesis at the post-transcriptional level.
    Peffley DM; Gayen AK
    J Nutr; 2003 Jan; 133(1):38-44. PubMed ID: 12514264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Posttranslational Regulation of HMG CoA Reductase, the Rate-Limiting Enzyme in Synthesis of Cholesterol.
    Schumacher MM; DeBose-Boyd RA
    Annu Rev Biochem; 2021 Jun; 90():659-679. PubMed ID: 34153214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic and biochemical aspects of yeast sterol regulation involving 3-hydroxy-3-methylglutaryl coenzyme A reductase.
    Bard M; Downing JF
    J Gen Microbiol; 1981 Aug; 125(2):415-20. PubMed ID: 7033470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The biology of HMG-CoA reductase: the pros of contra-regulation.
    Hampton R; Dimster-Denk D; Rine J
    Trends Biochem Sci; 1996 Apr; 21(4):140-5. PubMed ID: 8701471
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of cholesterol synthesis through regulated ER-associated degradation of HMG CoA reductase.
    Jo Y; Debose-Boyd RA
    Crit Rev Biochem Mol Biol; 2010 Jun; 45(3):185-98. PubMed ID: 20482385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutations that affect vacuole biogenesis inhibit proliferation of the endoplasmic reticulum in Saccharomyces cerevisiae.
    Koning AJ; Larson LL; Cadera EJ; Parrish ML; Wright RL
    Genetics; 2002 Apr; 160(4):1335-52. PubMed ID: 11973291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Farnesol is not the nonsterol regulator mediating degradation of HMG-CoA reductase in rat liver.
    Keller RK; Zhao Z; Chambers C; Ness GC
    Arch Biochem Biophys; 1996 Apr; 328(2):324-30. PubMed ID: 8645011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.