BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 8166465)

  • 1. The molecular and cellular basis of human lung cancer.
    Gazdar AF
    Anticancer Res; 1994; 14(1B):261-7. PubMed ID: 8166465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular genetics of small cell lung carcinoma.
    Wistuba II; Gazdar AF; Minna JD
    Semin Oncol; 2001 Apr; 28(2 Suppl 4):3-13. PubMed ID: 11479891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular biology of lung cancer.
    Gazdar AF
    Tohoku J Exp Med; 1992 Oct; 168(2):239-45. PubMed ID: 1306309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints.
    Wistuba II; Behrens C; Virmani AK; Mele G; Milchgrub S; Girard L; Fondon JW; Garner HR; McKay B; Latif F; Lerman MI; Lam S; Gazdar AF; Minna JD
    Cancer Res; 2000 Apr; 60(7):1949-60. PubMed ID: 10766185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathology of non-small cell lung cancer. New diagnostic approaches.
    Linnoila I
    Hematol Oncol Clin North Am; 1990 Dec; 4(6):1027-51. PubMed ID: 1962774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular pathogenesis of lung cancer and potential translational applications.
    Minna JD; Fong K; Zöchbauer-Müller S; Gazdar AF
    Cancer J; 2002; 8 Suppl 1():S41-6. PubMed ID: 12075701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering.
    Girard L; Zöchbauer-Müller S; Virmani AK; Gazdar AF; Minna JD
    Cancer Res; 2000 Sep; 60(17):4894-906. PubMed ID: 10987304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroendocrine tumors of the lung. Pathology and molecular biology.
    Vuitch F; Sekido Y; Fong K; Mackay B; Minna JD; Gazdar AF
    Chest Surg Clin N Am; 1997 Feb; 7(1):21-47. PubMed ID: 9001754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular genetic characterization of neuroendocrine lung cancer cell lines.
    Lai SL; Brauch H; Knutsen T; Johnson BE; Nau MM; Mitsudomi T; Tsai CM; Whang-Peng J; Zbar B; Kaye FJ
    Anticancer Res; 1995; 15(2):225-32. PubMed ID: 7762988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic markers for early detection of lung cancer and outcome measures for response to chemoprevention.
    Wiest JS; Franklin WA; Drabkin H; Gemmill R; Sidransky D; Anderson MW
    J Cell Biochem Suppl; 1997; 28-29():64-73. PubMed ID: 9589350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition from SCLC to NSCLC phenotype is accompanied by an increased TRE-binding activity and recruitment of specific AP-1 proteins.
    Risse-Hackl G; Adamkiewicz J; Wimmel A; Schuermann M
    Oncogene; 1998 Jun; 16(23):3057-68. PubMed ID: 9662339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal deletion, gene amplification, alternative processing, and autocrine growth factor production in the pathogenesis of human lung cancer.
    Minna JD; Battey JF; Birrer M; Brooks BJ; Cuttitta F; DeGreve J; Gazdar AF; Johnson BE; Nau MM; Sausville EA
    Princess Takamatsu Symp; 1986; 17():109-22. PubMed ID: 3332004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytogenetic and molecular aspects of lung cancer.
    Panani AD; Roussos C
    Cancer Lett; 2006 Jul; 239(1):1-9. PubMed ID: 16112428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common patterns of genetic evolution in human solid tumors.
    Shackney SE; Shankey TV
    Cytometry; 1997 Sep; 29(1):1-27. PubMed ID: 9298807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein expression of the RB-related gene family and SV40 large T antigen in mesothelioma and lung cancer.
    Modi S; Kubo A; Oie H; Coxon AB; Rehmatulla A; Kaye FJ
    Oncogene; 2000 Sep; 19(40):4632-9. PubMed ID: 11030152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of trisomy 7 in nonmalignant bronchial epithelium from lung cancer patients and individuals at risk for lung cancer.
    Crowell RE; Gilliland FD; Temes RT; Harms HJ; Neft RE; Heaphy E; Auckley DH; Crooks LA; Jordan SW; Samet JM; Lechner JF; Belinsky SA
    Cancer Epidemiol Biomarkers Prev; 1996 Aug; 5(8):631-7. PubMed ID: 8824366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma.
    Wistuba II; Behrens C; Milchgrub S; Bryant D; Hung J; Minna JD; Gazdar AF
    Oncogene; 1999 Jan; 18(3):643-50. PubMed ID: 9989814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carcinogen exposure, p53 alteration, and K-ras mutation in synchronous multiple primary lung carcinoma.
    Wang X; Christiani DC; Mark EJ; Nelson H; Wiencke JK; Gunn L; Wain JC; Kelsey KT
    Cancer; 1999 Apr; 85(8):1734-9. PubMed ID: 10223567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear factor-kappaB (NF-kappaB) is frequently expressed in lung cancer and preneoplastic lesions.
    Tang X; Liu D; Shishodia S; Ozburn N; Behrens C; Lee JJ; Hong WK; Aggarwal BB; Wistuba II
    Cancer; 2006 Dec; 107(11):2637-46. PubMed ID: 17078054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FHIT and FRA3B 3p14.2 allele loss are common in lung cancer and preneoplastic bronchial lesions and are associated with cancer-related FHIT cDNA splicing aberrations.
    Fong KM; Biesterveld EJ; Virmani A; Wistuba I; Sekido Y; Bader SA; Ahmadian M; Ong ST; Rassool FV; Zimmerman PV; Giaccone G; Gazdar AF; Minna JD
    Cancer Res; 1997 Jun; 57(11):2256-67. PubMed ID: 9187130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.