These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 8166559)
1. [Metabolism of alpha-ketoacids in erythromycin biosynthesis in various strains of Saccharopolyspora erythraea]. Bulgakova VG; Grushina VA; Orlova TI; Petrykina ZM; Polin AN; Mironov VA; Danilenko VN Antibiot Khimioter; 1993 Jun; 38(6):14-9. PubMed ID: 8166559 [TBL] [Abstract][Full Text] [Related]
2. Characterization and regulation of NADP+-isocitrate dehydrogenase from Saccharopolyspora erythraea. Alvarado A; Flores ME Biotechnol Lett; 2003 Jul; 25(14):1175-8. PubMed ID: 12967008 [TBL] [Abstract][Full Text] [Related]
3. PccD Regulates Branched-Chain Amino Acid Degradation and Exerts a Negative Effect on Erythromycin Production in Saccharopolyspora erythraea. Xu Z; Liu Y; Ye BC Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439982 [TBL] [Abstract][Full Text] [Related]
4. Biochemical parameters of Saccharopolyspora erythraea during feeding ammonium sulphate in erythromycin biosynthesis phase. Zou X; Li WJ; Zeng W; Hang HF; Chu J; Zhuang YP; Zhang SL Prikl Biokhim Mikrobiol; 2013; 49(2):190-6. PubMed ID: 23795479 [TBL] [Abstract][Full Text] [Related]
5. Blocking the flow of propionate into TCA cycle through a mutB knockout leads to a significant increase of erythromycin production by an industrial strain of Saccharopolyspora erythraea. Chen C; Hong M; Chu J; Huang M; Ouyang L; Tian X; Zhuang Y Bioprocess Biosyst Eng; 2017 Feb; 40(2):201-209. PubMed ID: 27709326 [TBL] [Abstract][Full Text] [Related]
6. Characterization and engineering of the Lrp/AsnC family regulator SACE_5717 for erythromycin overproduction in Saccharopolyspora erythraea. Liu J; Chen Y; Li L; Yang E; Wang Y; Wu H; Zhang L; Wang W; Zhang B J Ind Microbiol Biotechnol; 2019 Jul; 46(7):1013-1024. PubMed ID: 31016583 [TBL] [Abstract][Full Text] [Related]
7. Erythromycin production in Saccharopolyspora erythraea does not require a functional propionyl-CoA carboxylase. Donadio S; Staver MJ; Katz L Mol Microbiol; 1996 Mar; 19(5):977-84. PubMed ID: 8830278 [TBL] [Abstract][Full Text] [Related]
8. SACE_5599, a putative regulatory protein, is involved in morphological differentiation and erythromycin production in Saccharopolyspora erythraea. Kirm B; Magdevska V; Tome M; Horvat M; Karničar K; Petek M; Vidmar R; Baebler S; Jamnik P; Fujs Š; Horvat J; Fonovič M; Turk B; Gruden K; Petković H; Kosec G Microb Cell Fact; 2013 Dec; 12():126. PubMed ID: 24341557 [TBL] [Abstract][Full Text] [Related]
9. A genetically engineered strain of Saccharopolyspora erythraea that produces 6,12-dideoxyerythromycin A as the major fermentation product. Stassi D; Post D; Satter M; Jackson M; Maine G Appl Microbiol Biotechnol; 1998 Jun; 49(6):725-31. PubMed ID: 9684306 [TBL] [Abstract][Full Text] [Related]
10. Dissecting and engineering of the TetR family regulator SACE_7301 for enhanced erythromycin production in Saccharopolyspora erythraea. Wu H; Chen M; Mao Y; Li W; Liu J; Huang X; Zhou Y; Ye BC; Zhang L; Weaver DT; Zhang B Microb Cell Fact; 2014 Nov; 13():158. PubMed ID: 25391994 [TBL] [Abstract][Full Text] [Related]
11. Hong M; Mou H; Liu X; Huang M; Chu J Bioprocess Biosyst Eng; 2017 Sep; 40(9):1337-1348. PubMed ID: 28567527 [TBL] [Abstract][Full Text] [Related]
12. Integrated omics approaches provide strategies for rapid erythromycin yield increase in Saccharopolyspora erythraea. Karničar K; Drobnak I; Petek M; Magdevska V; Horvat J; Vidmar R; Baebler Š; Rotter A; Jamnik P; Fujs Š; Turk B; Fonovič M; Gruden K; Kosec G; Petković H Microb Cell Fact; 2016 Jun; 15():93. PubMed ID: 27255285 [TBL] [Abstract][Full Text] [Related]
13. Improved erythromycin production in a genetically engineered industrial strain of Saccharopolyspora erythraea. Minas W; Brünker P; Kallio PT; Bailey JE Biotechnol Prog; 1998; 14(4):561-6. PubMed ID: 9694676 [TBL] [Abstract][Full Text] [Related]
14. Enhancing erythromycin production in Saccharopolyspora erythraea through rational engineering and fermentation refinement: A Design-Build-Test-Learn approach. Shao M; Xu F; Ke X; Huang M; Chu J Biotechnol J; 2024 May; 19(5):e2400039. PubMed ID: 38797723 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of erythromycin synthesis by disruption of malonyl-coenzyme A decarboxylase gene eryM in Saccharopolyspora erythraea. Hsieh YJ; Kolattukudy PE J Bacteriol; 1994 Feb; 176(3):714-24. PubMed ID: 8300527 [TBL] [Abstract][Full Text] [Related]
16. [Antioxidant effect on the growth of Saccharopolyspora erythraea and biosynthesis of erythromycins]. Michurina TA; Sergeeva AV; Mironov VA Antibiot Khimioter; 2005; 50(12):3-8. PubMed ID: 19140479 [TBL] [Abstract][Full Text] [Related]
17. Two amino acids missing of MtrA resulted in increased erythromycin level and altered phenotypes in Saccharopolyspora erythraea. Pan Q; Tong Y; Han YJ; Ye BC Appl Microbiol Biotechnol; 2019 Jun; 103(11):4539-4548. PubMed ID: 30997553 [TBL] [Abstract][Full Text] [Related]
18. Knocking out of tailoring genes eryK and eryG in an industrial erythromycin-producing strain of Saccharopolyspora erythraea leading to overproduction of erythromycin B, C and D at different conversion ratios. Zhang Q; Wu J; Qian J; Chu J; Zhuang Y; Zhang S; Liu W Lett Appl Microbiol; 2011 Feb; 52(2):129-37. PubMed ID: 21175699 [TBL] [Abstract][Full Text] [Related]
19. The glucose RQ-feedback control leading to improved erythromycin production by a recombinant strain Saccharopolyspora erythraea ZL1004 and its scale-up to 372-m(3) fermenter. Chen Y; Wang Z; Chu J; Xi B; Zhuang Y Bioprocess Biosyst Eng; 2015 Jan; 38(1):105-12. PubMed ID: 25042891 [TBL] [Abstract][Full Text] [Related]
20. Studies on the interaction of fermentation and microfiltration operations: erythromycin recovery from Saccharopolyspora erythraea fermentation broths. Davies JL; Baganz F; Ison AP; Lye GJ Biotechnol Bioeng; 2000 Aug; 69(4):429-39. PubMed ID: 10862681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]