BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

746 related articles for article (PubMed ID: 8166708)

  • 1. Modulation of the suppression efficiency and amino acid identity of an artificial yeast amber isoleucine transfer RNA in Escherichia coli by a G-U pair in the anticodon stem.
    Büttcher V; Senger B; Schumacher S; Reinbolt J; Fasiolo F
    Biochem Biophys Res Commun; 1994 Apr; 200(1):370-7. PubMed ID: 8166708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase.
    Jahn M; Rogers MJ; Söll D
    Nature; 1991 Jul; 352(6332):258-60. PubMed ID: 1857423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switching tRNA(Gln) identity from glutamine to tryptophan.
    Rogers MJ; Adachi T; Inokuchi H; Söll D
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3463-7. PubMed ID: 1565639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identity elements for specific aminoacylation of a tRNA by mammalian lysyl-tRNA synthetase bearing a nonspecific tRNA-interacting factor.
    Francin M; Mirande M
    Biochemistry; 2006 Aug; 45(33):10153-60. PubMed ID: 16906773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The modified wobble base inosine in yeast tRNAIle is a positive determinant for aminoacylation by isoleucyl-tRNA synthetase.
    Senger B; Auxilien S; Englisch U; Cramer F; Fasiolo F
    Biochemistry; 1997 Jul; 36(27):8269-75. PubMed ID: 9204872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific interaction between anticodon nuclease and the tRNA(Lys) wobble base.
    Jiang Y; Meidler R; Amitsur M; Kaufmann G
    J Mol Biol; 2001 Jan; 305(3):377-88. PubMed ID: 11152597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tRNA identity switch mediated by the binding interaction between a tRNA anticodon and the accessory domain of a class II aminoacyl-tRNA synthetase.
    Yan W; Augustine J; Francklyn C
    Biochemistry; 1996 May; 35(21):6559-68. PubMed ID: 8639604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression.
    Anderson JC; Schultz PG
    Biochemistry; 2003 Aug; 42(32):9598-608. PubMed ID: 12911301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli lysyl-tRNA synthetase and its effective repression by genetic engineering of the tRNA sequence.
    Fukunaga J; Yokogawa T; Ohno S; Nishikawa K
    J Biochem; 2006 Apr; 139(4):689-96. PubMed ID: 16672269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase.
    Rould MA; Perona JJ; Steitz TA
    Nature; 1991 Jul; 352(6332):213-8. PubMed ID: 1857417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases.
    Commans S; Lazard M; Delort F; Blanquet S; Plateau P
    J Mol Biol; 1998 May; 278(4):801-13. PubMed ID: 9614943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular recognition of the identity-determinant set of isoleucine transfer RNA from Escherichia coli.
    Nureki O; Niimi T; Muramatsu T; Kanno H; Kohno T; Florentz C; Giegé R; Yokoyama S
    J Mol Biol; 1994 Feb; 236(3):710-24. PubMed ID: 8114089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. tRNA structure and ribosomal function. I. tRNA nucleotide 27-43 mutations enhance first position wobble.
    Schultz DW; Yarus M
    J Mol Biol; 1994 Feb; 235(5):1381-94. PubMed ID: 8107080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A; Sissler M; Florentz C; Giegé R
    Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative design of a tRNA core for aminoacylation.
    Christian T; Lipman RS; Evilia C; Hou YM
    J Mol Biol; 2000 Nov; 303(4):503-14. PubMed ID: 11054287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The recognition of E. coli glutamine tRNA by glutaminyl-tRNA synthetase.
    Rogers MJ; Weygand-Durasević I; Schwob E; Sherman JM; Rogers KC; Thomann HU; Sylvers LA; Ohtsuka E; Inokuchi H; Söll D
    Nucleic Acids Symp Ser; 1993; (29):211-3. PubMed ID: 7504247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A base pair at the bottom of the anticodon stem is reciprocally preferred for discrimination of cognate tRNAs by Escherichia coli lysyl- and glutaminyl-tRNA synthetases.
    Fukunaga J; Ohno S; Nishikawa K; Yokogawa T
    Nucleic Acids Res; 2006; 34(10):3181-8. PubMed ID: 16772402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer RNA recognition by class I lysyl-tRNA synthetase from the Lyme disease pathogen Borrelia burgdorferi.
    Ambrogelly A; Frugier M; Ibba M; Söll D; Giegé R
    FEBS Lett; 2005 May; 579(12):2629-34. PubMed ID: 15862301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.