These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 8166709)

  • 1. Steady state fluorescence energy transfer measurements of human alpha apohemoglobin structure.
    O'Malley SM; McDonald MJ
    Biochem Biophys Res Commun; 1994 Apr; 200(1):384-8. PubMed ID: 8166709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring the effect of subunit assembly on the structural flexibility of human alpha apohemoglobin by steady-state fluorescence.
    O'Malley SM; McDonald MJ
    J Protein Chem; 1994 Aug; 13(6):561-7. PubMed ID: 7832985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence energy transfer between epsilon-ATP at the nucleotide binding site and N-(4-dimethylamino-3,5-dinitrophenyl)-maleimide at Cys-373 of G-actin.
    Miki M; Mihashi K
    Biochim Biophys Acta; 1978 Mar; 533(1):163-72. PubMed ID: 638187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance energy transfer between cysteine-34 and tryptophan-214 in human serum albumin. Distance measurements as a function of pH.
    Suzukida M; Le HP; Shahid F; McPherson RA; Birnbaum ER; Darnall DW
    Biochemistry; 1983 May; 22(10):2415-20. PubMed ID: 6860637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence studies of internal rotation in apohemoglobin alpha-chains.
    Oton J; Franchi D; Steiner RF; Martinez CF; Bucci E
    Arch Biochem Biophys; 1984 Feb; 228(2):519-24. PubMed ID: 6696445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimensions in solution of pyridoxylated apohemoglobin.
    Kowalczyck J; Bucci E
    Biochemistry; 1983 Sep; 22(20):4805-9. PubMed ID: 6626535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of the SH1-SH2 and SH1-ATPase distances in myosin subfragment-1 by resonance energy transfer using nanosecond fluorimetry.
    Cheung HC; Gonsoulin F; Garland F
    Biochim Biophys Acta; 1985 Nov; 832(1):52-62. PubMed ID: 2932161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence studies of human semi-beta-hemoglobin assembly.
    Chiu F; Vasudevan G; Morris A; McDonald MJ
    Biochem Biophys Res Commun; 1998 Jan; 242(2):365-8. PubMed ID: 9446800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer.
    Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance energy transfer determination of the distance between the four cysteine-364 residues in Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase.
    Alvear M; Encinas MV; Herrera L; Cardemil E
    Arch Biochem Biophys; 1994 Mar; 309(2):231-8. PubMed ID: 8135532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence energy transfer between Cys-10 residues in F-actin filaments.
    Miki M; Barden JA; Hambly BD; dos Remedios CG
    Biochem Int; 1986 May; 12(5):725-31. PubMed ID: 3089224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy transfer to a proton-transfer fluorescence probe: tryptophan to a flavonol in human serum albumin.
    Sytnik A; Litvinyuk I
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12959-63. PubMed ID: 8917526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of human apohemoglobin dimer dissociation.
    Moulton DP; McDonald MJ
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1278-83. PubMed ID: 8147871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-linear least-squares methods applied to the analysis of fluorescence energy transfer measurements.
    Flamion PJ; Cachia C; Schreiber JP
    J Biochem Biophys Methods; 1992 Mar; 24(1-2):1-13. PubMed ID: 1560175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolution of end-to-end distance distributions of flexible molecules using quenching-induced variations of the Forster distance for fluorescence energy transfer.
    Gryczynski I; Wiczk W; Johnson ML; Cheung HC; Wang CK; Lakowicz JR
    Biophys J; 1988 Oct; 54(4):577-86. PubMed ID: 3224143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of resonance energy homotransfer on the intrinsic tryptophan fluorescence emission of the bothropstoxin-I dimer.
    de Oliveira AH; Giglio JR; AndriĆ£o-Escarso SH; Ward RJ
    Biochem Biophys Res Commun; 2001 Jun; 284(4):1011-5. PubMed ID: 11409896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of C.I. acid red 27 with human hemoglobin in solution.
    Wang YQ; Zhang HM; Tang BP
    J Photochem Photobiol B; 2010 Aug; 100(2):76-83. PubMed ID: 20638979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence resonance energy transfer studies on the proximity between lysine-107 and cysteine-239 in rabbit muscle aldolase.
    Dobryszycki P; Kochman M
    Biochim Biophys Acta; 1988 Oct; 956(3):217-23. PubMed ID: 3139037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of asparagine at alpha 97 to the cooperative oxygenation process of hemoglobin.
    Kim HW; Shen TJ; Ho NT; Zou M; Tam MF; Ho C
    Biochemistry; 1996 May; 35(21):6620-7. PubMed ID: 8639610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.