BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8167347)

  • 21. Iron chelators induce apoptosis in proliferating cells.
    Hileti D; Panayiotidis P; Hoffbrand AV
    Br J Haematol; 1995 Jan; 89(1):181-7. PubMed ID: 7833261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exaprolol as a modulator of heart sarcolemmal (Na+ + K+)-ATPase. Evidence for interaction with an essential sulfhydryl group in the catalytic centre of the enzyme.
    Dzurba A; Ziegelhöffer A; Schmidtová L; Breier A; Vrbjar N; Okolicány J
    Gen Physiol Biophys; 1985 Jun; 4(3):257-64. PubMed ID: 2863195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transfusional iron overload and chelation therapy with deferoxamine and deferiprone (L1).
    Kontoghiorghes GJ; Pattichi K; Hadjigavriel M; Kolnagou A
    Transfus Sci; 2000 Dec; 23(3):211-23. PubMed ID: 11099897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selection of a new generation of orally active alpha-ketohydroxypyridine iron chelators intended for use in the treatment of iron overload.
    Kontoghiorghes GJ; Barr J; Nortey P; Sheppard L
    Am J Hematol; 1993 Apr; 42(4):340-9. PubMed ID: 8493983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation by iron loading and chelation of the uptake of non-transferrin-bound iron by human liver cells.
    Parkes JG; Randell EW; Olivieri NF; Templeton DM
    Biochim Biophys Acta; 1995 Apr; 1243(3):373-80. PubMed ID: 7727512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dose response studies using desferrioxamine and orally active chelators in a mouse model.
    Kontoghiorghes GJ
    Scand J Haematol; 1986 Jul; 37(1):63-70. PubMed ID: 3764334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Origin and fate of iron mobilized by the 3-hydroxypyridin-4-one oral chelators: studies in hypertransfused rats by selective radioiron probes of reticuloendothelial and hepatocellular iron stores.
    Zevin S; Link G; Grady RW; Hider RC; Peter HH; Hershko C
    Blood; 1992 Jan; 79(1):248-53. PubMed ID: 1728313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advances in iron overload therapies. prospects for effective use of deferiprone (L1), deferoxamine, the new experimental chelators ICL670, GT56-252, L1NA11 and their combinations.
    Kontoghiorghes GJ; Eracleous E; Economides C; Kolnagou A
    Curr Med Chem; 2005; 12(23):2663-81. PubMed ID: 16305464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iron-balance and dose-response studies of the oral iron chelator 1,2-dimethyl-3-hydroxypyrid-4-one (L1) in iron-loaded patients with sickle cell disease.
    Collins AF; Fassos FF; Stobie S; Lewis N; Shaw D; Fry M; Templeton DM; McClelland RA; Koren G; Olivieri NF
    Blood; 1994 Apr; 83(8):2329-33. PubMed ID: 8161801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The design and development of deferiprone (L1) and other iron chelators for clinical use: targeting methods and application prospects.
    Kontoghiorghes GJ; Pattichis K; Neocleous K; Kolnagou A
    Curr Med Chem; 2004 Aug; 11(16):2161-83. PubMed ID: 15279556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of deferiprone (L1) and deferoxamine on iron and essential element tissue level and parameters of oxidative status in dietary iron-loaded mice.
    Eybl V; Kotyzová D; Kolek M; Koutenský J; Nielsen P
    Toxicol Lett; 2002 Mar; 128(1-3):169-75. PubMed ID: 11869827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of desferrioxamine and deferiprone (L1) on the proliferation of MG-63 bone cells and on phosphatase alkaline activity.
    Naves Díaz ML; Elorriaga R; Canteros A; Cannata Andía JB
    Nephrol Dial Transplant; 1998; 13 Suppl 3():23-8. PubMed ID: 9568816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deferoxamine augments growth and pathogenicity of Rhizopus, while hydroxypyridinone chelators have no effect.
    Boelaert JR; Van Cutsem J; de Locht M; Schneider YJ; Crichton RR
    Kidney Int; 1994 Mar; 45(3):667-71. PubMed ID: 8196268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subcellular distribution of desferrioxamine and hydroxypyridin-4-one chelators in K562 cells affects chelation of intracellular iron pools.
    Hoyes KP; Porter JB
    Br J Haematol; 1993 Oct; 85(2):393-400. PubMed ID: 8280612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron transport and subcellular distribution in Hep G2 hepatocarcinoma cells.
    Parkes JG; Templeton DM
    Ann Clin Lab Sci; 1994; 24(6):509-20. PubMed ID: 7847779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modification of heart sarcolemmal Na+/K+-ATPase activity during development of the calcium paradox.
    Alto LE; Elimban V; Lukas A; Dhalla NS
    Mol Cell Biochem; 2000 Apr; 207(1-2):87-94. PubMed ID: 10888231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron chelators inhibit human platelet aggregation, thromboxane A2 synthesis and lipoxygenase activity.
    Barradas MA; Jeremy JY; Kontoghiorghes GJ; Mikhailidis DP; Hoffbrand AV; Dandona P
    FEBS Lett; 1989 Mar; 245(1-2):105-9. PubMed ID: 2494068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential toxicity of alpha-keto hydroxypyridine iron chelators and desferrioxamine to human haemopoietic precursors in vitro.
    Cunningham JM; al-Refaie FN; Hunter AE; Sheppard LN; Hoffbrand AV
    Eur J Haematol; 1994 Mar; 52(3):176-9. PubMed ID: 8168597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Objectives and mechanism of iron chelation therapy.
    Hershko C; Link G; Konijn AM; Cabantchik ZI
    Ann N Y Acad Sci; 2005; 1054():124-35. PubMed ID: 16339658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective and reversible inhibition of heart sarcolemmal (Na+ + K+)-ATPase by p-bromophenyl isothiocyanate. Evidence for a sulfhydryl group in the ATP-binding site of the enzyme.
    Ziegelhöffer A; Breier A; Dzurba A; Vrbjar N
    Gen Physiol Biophys; 1983 Dec; 2(6):447-56. PubMed ID: 6088362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.