BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8167949)

  • 1. Toxicity of cotton phytoalexins to zoopathogenic fungi.
    Mace ME; Stipanovic RD; Bell AA
    Nat Toxins; 1993; 1(5):294-5. PubMed ID: 8167949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of delta-cadinene synthase and sesquiterpenoid phytoalexins in cotton by Verticillium dahliae.
    Bianchini GM; Stipanovic RD; Bell AA
    J Agric Food Chem; 1999 Oct; 47(10):4403-6. PubMed ID: 10552825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Susceptibility of zoopathogenic fungi to phytoalexins.
    Gordon MA; Lapa EW; Fitter MS; Lindsay M
    Antimicrob Agents Chemother; 1980 Feb; 17(2):120-3. PubMed ID: 7387136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulent Leptosphaeria maculans: structures, syntheses and antifungal activity.
    Pedras MS; Chumala PB; Suchy M
    Phytochemistry; 2003 Nov; 64(5):949-56. PubMed ID: 14561510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).
    Yang CQ; Wu XM; Ruan JX; Hu WL; Mao YB; Chen XY; Wang LJ
    Phytochemistry; 2013 Dec; 96():46-56. PubMed ID: 24074555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant--fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants.
    Grayer RJ; Kokubun T
    Phytochemistry; 2001 Feb; 56(3):253-63. PubMed ID: 11243452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoalexins from the crucifer rutabaga: structures, syntheses, biosyntheses, and antifungal activity.
    Pedras MS; Montaut S; Suchy M
    J Org Chem; 2004 Jun; 69(13):4471-6. PubMed ID: 15202903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical composition profiling and antifungal activity of the essential oil and plant extracts of Mesembryanthemum edule (L.) bolus leaves.
    Omoruyi BE; Afolayan AJ; Bradley G
    Afr J Tradit Complement Altern Med; 2014; 11(4):19-30. PubMed ID: 25392576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light- and singlet oxygen-mediated antifungal activity of phenylphenalenone phytoalexins.
    Lazzaro A; Corominas M; Martí C; Flors C; Izquierdo LR; Grillo TA; Luis JG; Nonell S
    Photochem Photobiol Sci; 2004 Jul; 3(7):706-10. PubMed ID: 15239009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity of endophytic fungi from different Verticillium-wilt-resistant Gossypium hirsutum and evaluation of antifungal activity against Verticillium dahliae in vitro.
    Li ZF; Wang LF; Feng ZL; Zhao LH; Shi YQ; Zhu HQ
    J Microbiol Biotechnol; 2014 Sep; 24(9):1149-61. PubMed ID: 24836187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and biological properties of isoflavonoid phytoalexins.
    Smith DA; Banks SW
    Prog Clin Biol Res; 1986; 213():113-24. PubMed ID: 3520582
    [No Abstract]   [Full Text] [Related]  

  • 12. Phytoalexins of leguminous plants.
    Rizk AF; Wood GE
    Crit Rev Food Sci Nutr; 1980; 13(3):245-95. PubMed ID: 7002469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and Characterization of S-Adenosyl-L-Methionine: Desoxyhemigossypol-6-O-Methyltransferase from Cotton Plants. An Enzyme Capable of Methylating the Defense Terpenoids of Cotton.
    Liu J; Benedict CR; Stipanovic RD; Bell AA
    Plant Physiol; 1999 Nov; 121(3):1017-1024. PubMed ID: 10557251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism.
    Jeandet P; Douillet-Breuil AC; Bessis R; Debord S; Sbaghi M; Adrian M
    J Agric Food Chem; 2002 May; 50(10):2731-41. PubMed ID: 11982391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of flavonoids from the heartwood and resin of Prunus avium and some preliminary biological investigations.
    McNulty J; Nair JJ; Bollareddy E; Keskar K; Thorat A; Crankshaw DJ; Holloway AC; Khan G; Wright GD; Ejim L
    Phytochemistry; 2009 Dec; 70(17-18):2040-6. PubMed ID: 19837443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNAi construct of a cytochrome P450 gene CYP82D109 blocks an early step in the biosynthesis of hemigossypolone and gossypol in transgenic cotton plants.
    Wagner TA; Liu J; Puckhaber LS; Bell AA; Williams H; Stipanovic RD
    Phytochemistry; 2015 Jul; 115():59-69. PubMed ID: 25794893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi.
    Pedras MS; Ahiahonu PW
    Phytochemistry; 2005 Feb; 66(4):391-411. PubMed ID: 15694450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of growth of zoopathogenic fungi by garlic extract.
    Appleton JA; Tansey MR
    Mycologia; 1975; 67(4):882-5. PubMed ID: 1177972
    [No Abstract]   [Full Text] [Related]  

  • 19. Fungal resistance to plant antibiotics as a mechanism of pathogenesis.
    Morrissey JP; Osbourn AE
    Microbiol Mol Biol Rev; 1999 Sep; 63(3):708-24. PubMed ID: 10477313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of crucifer phytoalexins in Sclerotinia sclerotiorum: detoxification of strongly antifungal compounds involves glucosylation.
    Pedras MS; Hossain M
    Org Biomol Chem; 2006 Jul; 4(13):2581-90. PubMed ID: 16791322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.