These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8168067)

  • 1. Computerized characterization of mammographic masses: analysis of spiculation.
    Giger ML; Vyborny CJ; Schmidt RA
    Cancer Lett; 1994 Mar; 77(2-3):201-11. PubMed ID: 8168067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of spiculation in the computerized classification of mammographic masses.
    Huo Z; Giger ML; Vyborny CJ; Bick U; Lu P; Wolverton DE; Schmidt RA
    Med Phys; 1995 Oct; 22(10):1569-79. PubMed ID: 8551981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated computerized classification of malignant and benign masses on digitized mammograms.
    Huo Z; Giger ML; Vyborny CJ; Wolverton DE; Schmidt RA; Doi K
    Acad Radiol; 1998 Mar; 5(3):155-68. PubMed ID: 9522881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of border information in the classification of mammographic masses.
    Varela C; Timp S; Karssemeijer N
    Phys Med Biol; 2006 Jan; 51(2):425-41. PubMed ID: 16394348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method to improve visual similarity of breast masses for an interactive computer-aided diagnosis environment.
    Zheng B; Lu A; Hardesty LA; Sumkin JH; Hakim CM; Ganott MA; Gur D
    Med Phys; 2006 Jan; 33(1):111-7. PubMed ID: 16485416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computerized detection of masses in digital mammograms: investigation of feature-analysis techniques.
    Yin FF; Giger ML; Doi K; Vyborny CJ; Schmidt RA
    J Digit Imaging; 1994 Feb; 7(1):18-26. PubMed ID: 8172975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated detection of breast mass spiculation levels and evaluation of scheme performance.
    Jiang L; Song E; Xu X; Ma G; Zheng B
    Acad Radiol; 2008 Dec; 15(12):1534-44. PubMed ID: 19000870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative characterization of mass lesions on digitized mammograms for computer-assisted diagnosis.
    Leichter I; Buchbinder S; Bamberger P; Novak B; Fields S; Lederman R
    Invest Radiol; 2000 Jun; 35(6):366-72. PubMed ID: 10853611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of dominant features on neural network performance in the classification of mammographic lesions.
    Huo Z; Giger ML; Metz CE
    Phys Med Biol; 1999 Oct; 44(10):2579-95. PubMed ID: 10533930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement in radiologists' characterization of malignant and benign breast masses on serial mammograms with computer-aided diagnosis: an ROC study.
    Hadjiiski L; Chan HP; Sahiner B; Helvie MA; Roubidoux MA; Blane C; Paramagul C; Petrick N; Bailey J; Klein K; Foster M; Patterson S; Adler D; Nees A; Shen J
    Radiology; 2004 Oct; 233(1):255-65. PubMed ID: 15317954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computerized analysis of multiple-mammographic views: potential usefulness of special view mammograms in computer-aided diagnosis.
    Huo Z; Giger ML; Vyborny CJ
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1285-92. PubMed ID: 11811828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breast cancer: effectiveness of computer-aided diagnosis observer study with independent database of mammograms.
    Huo Z; Giger ML; Vyborny CJ; Metz CE
    Radiology; 2002 Aug; 224(2):560-8. PubMed ID: 12147857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boundary modelling and shape analysis methods for classification of mammographic masses.
    Rangayyan RM; Mudigonda NR; Desautels JE
    Med Biol Eng Comput; 2000 Sep; 38(5):487-96. PubMed ID: 11094803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-aided characterization of mammographic masses: accuracy of mass segmentation and its effects on characterization.
    Sahiner B; Petrick N; Chan HP; Hadjiiski LM; Paramagul C; Helvie MA; Gurcan MN
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1275-84. PubMed ID: 11811827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neighborhood Structural Similarity Mapping for the Classification of Masses in Mammograms.
    Rabidas R; Midya A; Chakraborty J
    IEEE J Biomed Health Inform; 2018 May; 22(3):826-834. PubMed ID: 28622679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of tolerant features for characterization of masses in mammograms.
    Rojas-Domínguez A; Nandi AK
    Comput Biol Med; 2009 Aug; 39(8):678-88. PubMed ID: 19524221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computerized characterization of masses on mammograms: the rubber band straightening transform and texture analysis.
    Sahiner B; Chan HP; Petrick N; Helvie MA; Goodsitt MM
    Med Phys; 1998 Apr; 25(4):516-26. PubMed ID: 9571620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computerized detection of masses in digital mammograms: analysis of bilateral subtraction images.
    Yin FF; Giger ML; Doi K; Metz CE; Vyborny CJ; Schmidt RA
    Med Phys; 1991; 18(5):955-63. PubMed ID: 1961160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodality computerized diagnosis of breast lesions using mammography and sonography.
    Drukker K; Horsch K; Giger ML
    Acad Radiol; 2005 Aug; 12(8):970-9. PubMed ID: 16087091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malignant and benign clustered microcalcifications: automated feature analysis and classification.
    Jiang Y; Nishikawa RM; Wolverton DE; Metz CE; Giger ML; Schmidt RA; Vyborny CJ; Doi K
    Radiology; 1996 Mar; 198(3):671-8. PubMed ID: 8628853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.