These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8168524)

  • 1. Catabolism of aromatics in Pseudomonas putida U. Formal evidence that phenylacetic acid and 4-hydroxyphenylacetic acid are catabolized by two unrelated pathways.
    Olivera ER; Reglero A; Martínez-Blanco H; Fernández-Medarde A; Moreno MA; Luengo JM
    Eur J Biochem; 1994 Apr; 221(1):375-81. PubMed ID: 8168524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic catabolism of phenylacetic acid in Pseudomonas putida U: biochemical characterization of a specific phenylacetic acid transport system and formal demonstration that phenylacetyl-coenzyme A is a catabolic intermediate.
    Schleissner C; Olivera ER; Fernández-Valverde M; Luengo JM
    J Bacteriol; 1994 Dec; 176(24):7667-76. PubMed ID: 8002592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-component hydroxylase involved in the assimilation of 3-hydroxyphenyl acetate in Pseudomonas putida.
    Arias-Barrau E; Sandoval A; Naharro G; Olivera ER; Luengo JM
    J Biol Chem; 2005 Jul; 280(28):26435-47. PubMed ID: 15866873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster.
    Prieto MA; Díaz E; García JL
    J Bacteriol; 1996 Jan; 178(1):111-20. PubMed ID: 8550403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of phenylacetic acid uptake is σ54 dependent in Pseudomonas putida CA-3.
    O' Leary ND; O' Mahony MM; Dobson AD
    BMC Microbiol; 2011 Oct; 11():229. PubMed ID: 21995721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization and organization of phenol degradation genes of Pseudomonas putida strain H.
    Herrmann H; Müller C; Schmidt I; Mahnke J; Petruschka L; Hahnke K
    Mol Gen Genet; 1995 Apr; 247(2):240-6. PubMed ID: 7753034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenylacetyl-coenzyme A is the true inducer of the phenylacetic acid catabolism pathway in Pseudomonas putida U.
    García B; Olivera ER; Miñambres B; Carnicero D; Muñiz C; Naharro G; Luengo JM
    Appl Environ Microbiol; 2000 Oct; 66(10):4575-8. PubMed ID: 11010921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction and repression of the sty operon in Pseudomonas putida CA-3 during growth on phenylacetic acid under organic and inorganic nutrient-limiting continuous culture conditions.
    O'Leary ND; Duetz WA; Dobson AD; O'Connor KE
    FEMS Microbiol Lett; 2002 Mar; 208(2):263-8. PubMed ID: 11959447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1.
    Hallier-Soulier S; Ducrocq V; Truffaut N
    Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon.
    Olivera ER; Miñambres B; García B; Muñiz C; Moreno MA; Ferrández A; Díaz E; García JL; Luengo JM
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6419-24. PubMed ID: 9600981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of 4-chlorophenylacetic acid by a Pseudomonas species.
    Klages U; Markus A; Lingens F
    J Bacteriol; 1981 Apr; 146(1):64-8. PubMed ID: 7217006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the last step of the aerobic phenylacetic acid degradation pathway.
    Nogales J; Macchi R; Franchi F; Barzaghi D; Fernández C; García JL; Bertoni G; Díaz E
    Microbiology (Reading); 2007 Feb; 153(Pt 2):357-365. PubMed ID: 17259607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Pseudomonas putida mutants unable to catabolize benzoate: cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal DNA fragment able to substitute for xylS in activation of the TOL lower-pathway promoter.
    Jeffrey WH; Cuskey SM; Chapman PJ; Resnick S; Olsen RH
    J Bacteriol; 1992 Aug; 174(15):4986-96. PubMed ID: 1629155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid.
    Martínez-Blanco H; Reglero A; Rodriguez-Aparicio LB; Luengo JM
    J Biol Chem; 1990 Apr; 265(12):7084-90. PubMed ID: 2324116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catabolite-mediated mutations in alternate toluene degradative pathways in Pseudomonas putida.
    Leddy MB; Phipps DW; Ridgway HF
    J Bacteriol; 1995 Aug; 177(16):4713-20. PubMed ID: 7642499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of a FAD-monooxygenase gene ( cadA) involved in degradation of chloranilic acid (2,5-dichloro-3,6-dihydroxybenzo-1,4-quinone) in Pseudomonas putida TQ07.
    Treviño-Quintanilla LG; Galán-Wong LJ; Rodríguez-Uribe B; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):545-50. PubMed ID: 12172624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204.
    Eaton RW; Timmis KN
    J Bacteriol; 1986 Oct; 168(1):123-31. PubMed ID: 3019995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3.
    O'Connor K; Buckley CM; Hartmans S; Dobson AD
    Appl Environ Microbiol; 1995 Feb; 61(2):544-8. PubMed ID: 7574594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of naphthalene dioxygenase in indole-3-acetic acid biosynthesis by Pseudomonas putida.
    Mordukhova EA; Sokolov SL; Kochetkov VV; Kosheleva IA; Zelenkova NF; Boronin AM
    FEMS Microbiol Lett; 2000 Sep; 190(2):279-85. PubMed ID: 11034292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sigma54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization.
    Endoh T; Habe H; Nojiri H; Yamane H; Omori T
    Mol Microbiol; 2005 Feb; 55(3):897-911. PubMed ID: 15661012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.