These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 8168968)

  • 1. Factors affecting invasion of HT-29 and HEp-2 epithelial cells by organisms of the Mycobacterium avium complex.
    Bermudez LE; Young LS
    Infect Immun; 1994 May; 62(5):2021-6. PubMed ID: 8168968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycobacterium avium enters intestinal epithelial cells through the apical membrane, but not by the basolateral surface, activates small GTPase Rho and, once within epithelial cells, expresses an invasive phenotype.
    Sangari FJ; Goodman J; Bermudez LE
    Cell Microbiol; 2000 Dec; 2(6):561-8. PubMed ID: 11207608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic and genomic analyses of the Mycobacterium avium complex reveal differences in gastrointestinal invasion and genomic composition.
    McGarvey JA; Bermudez LE
    Infect Immun; 2001 Dec; 69(12):7242-9. PubMed ID: 11705893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural study of Mycobacterium avium infection of HT-29 human intestinal epithelial cells.
    Sangari FJ; Goodman JR; Bermudez LE
    J Med Microbiol; 2000 Feb; 49(2):139-147. PubMed ID: 10670564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rifabutin and sparfloxacin but not azithromycin inhibit binding of Mycobacterium avium complex to HT-29 intestinal mucosal cells.
    Bermudez LE; Young LS; Inderlied CB
    Antimicrob Agents Chemother; 1994 May; 38(5):1200-2. PubMed ID: 8067766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Mycobacterium avium pathogenesis.
    Bermudez LE; Wagner D; Sosnowska D
    Arch Immunol Ther Exp (Warsz); 2000; 48(6):521-7. PubMed ID: 11197607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycobacterium avium infection of epithelial cells results in inhibition or delay in the release of interleukin-8 and RANTES.
    Sangari FJ; Petrofsky M; Bermudez LE
    Infect Immun; 1999 Oct; 67(10):5069-75. PubMed ID: 10496879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposure to low oxygen tension and increased osmolarity enhance the ability of Mycobacterium avium to enter intestinal epithelial (HT-29) cells.
    Bermudez LE; Petrofsky M; Goodman J
    Infect Immun; 1997 Sep; 65(9):3768-73. PubMed ID: 9284150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Mycobacterium avium genes that affect invasion of the intestinal epithelium.
    Miltner E; Daroogheh K; Mehta PK; Cirillo SL; Cirillo JD; Bermudez LE
    Infect Immun; 2005 Jul; 73(7):4214-21. PubMed ID: 15972512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycobacterium avium infection of gut mucosa in mice associated with late inflammatory response and intestinal cell necrosis.
    Kim SY; Goodman JR; Petrofsky M; Bermudez LE
    J Med Microbiol; 1998 Aug; 47(8):725-31. PubMed ID: 9877194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the ability of Mycobacterium avium, M. smegmatis and M. tuberculosis to invade and replicate within HEp-2 epithelial cells.
    Bermudez LE; Shelton K; Young LS
    Tuber Lung Dis; 1995 Jun; 76(3):240-7. PubMed ID: 7548908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The environment of "Mycobacterium avium subsp. hominissuis" microaggregates induces synthesis of small proteins associated with efficient infection of respiratory epithelial cells.
    Babrak L; Danelishvili L; Rose SJ; Kornberg T; Bermudez LE
    Infect Immun; 2015 Feb; 83(2):625-36. PubMed ID: 25422262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of a Host-to-Host Transmission Model for
    Bermudez LE; Rose SJ; Everman JL; Ziaie NR
    Front Cell Infect Microbiol; 2018; 8():123. PubMed ID: 29740544
    [No Abstract]   [Full Text] [Related]  

  • 14. Microaggregate-associated protein involved in invasion of epithelial cells by Mycobacterium avium subsp. hominissuis.
    Babrak L; Danelishvili L; Rose SJ; Bermudez LE
    Virulence; 2015; 6(7):694-703. PubMed ID: 26252358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycobacterium avium invades the intestinal mucosa primarily by interacting with enterocytes.
    Sangari FJ; Goodman J; Petrofsky M; Kolonoski P; Bermudez LE
    Infect Immun; 2001 Mar; 69(3):1515-20. PubMed ID: 11179321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyrosine protein kinase inhibitors block invasin-promoted bacterial uptake by epithelial cells.
    Rosenshine I; Duronio V; Finlay BB
    Infect Immun; 1992 Jun; 60(6):2211-7. PubMed ID: 1587588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential virulence of Mycobacterium avium strains isolated from HIV-infected patients with disseminated M. avium complex disease.
    Ohkusu K; Bermudez LE; Nash KA; MacGregor RR; Inderlied CB
    J Infect Dis; 2004 Oct; 190(7):1347-54. PubMed ID: 15346348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of Mycobacterium avium complex with human respiratory epithelial cells.
    Reddy VM; Kumar B
    J Infect Dis; 2000 Mar; 181(3):1189-93. PubMed ID: 10720553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the fibronectin-attachment protein of Mycobacterium avium reveals a fibronectin-binding motif conserved among mycobacteria.
    Schorey JS; Holsti MA; Ratliff TL; Allen PM; Brown EJ
    Mol Microbiol; 1996 Jul; 21(2):321-9. PubMed ID: 8858587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycobacterium avium resists exposure to the acidic conditions of the stomach.
    Bodmer T; Miltner E; Bermudez LE
    FEMS Microbiol Lett; 2000 Jan; 182(1):45-9. PubMed ID: 10612729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.