These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 8169082)
41. The neural crest. Graham A Curr Biol; 2003 May; 13(10):R381-4. PubMed ID: 12747846 [No Abstract] [Full Text] [Related]
42. The planar polarity gene strabismus regulates convergent extension movements in Xenopus. Darken RS; Scola AM; Rakeman AS; Das G; Mlodzik M; Wilson PA EMBO J; 2002 Mar; 21(5):976-85. PubMed ID: 11867525 [TBL] [Abstract][Full Text] [Related]
43. Experimental embryological methods for analysis of neural induction in the amphibian. Keller R; Poznanski A; Elul T Methods Mol Biol; 2008; 461():405-46. PubMed ID: 19030815 [No Abstract] [Full Text] [Related]
44. Analysis of cell movements in zebrafish embryos: morphometrics and measuring movement of labeled cell populations in vivo. Sepich DS; Solnica-Krezel L Methods Mol Biol; 2005; 294():211-33. PubMed ID: 15576915 [TBL] [Abstract][Full Text] [Related]
46. The interactive worm. Eighth international C. elegans Meeting, Madison, WI, USA, June 1-5, 1991. Hodgkin J New Biol; 1991 Oct; 3(10):951-4. PubMed ID: 1685094 [No Abstract] [Full Text] [Related]
47. Distribution and functional role of laminin during induction of the embryonic axis in the chick embryo. Zagris N; Chung AE Differentiation; 1990 Apr; 43(2):81-6. PubMed ID: 2373290 [TBL] [Abstract][Full Text] [Related]
48. Neural induction in amphibians. Grunz H Curr Top Dev Biol; 1997; 35():191-228. PubMed ID: 9292271 [No Abstract] [Full Text] [Related]
49. The association of primary embryonic organizer activity with the future dorsal side of amphibian eggs and early embryos. Malacinski GM; Chung HM; Asashima M Dev Biol; 1980 Jun; 77(2):449-62. PubMed ID: 7399132 [No Abstract] [Full Text] [Related]
50. Cell migration in the vertebrate embryo: role of cell adhesion and tissue environment in pattern formation. Thiery JP; Duband JL; Tucker GC Annu Rev Cell Biol; 1985; 1():91-113. PubMed ID: 3916324 [No Abstract] [Full Text] [Related]
51. Destruction of components of the neural induction system of the amphibian egg with ultraviolet irradiation. Malacinski GM; Brothers AJ; Chung HM Dev Biol; 1977 Mar; 56(1):24-39. PubMed ID: 557008 [No Abstract] [Full Text] [Related]
53. [Cellular and molecular mechanisms underlying vertebrate gastrulation]. Kai M; Tada M Tanpakushitsu Kakusan Koso; 2005 May; 50(6 Suppl):608-14. PubMed ID: 15926488 [No Abstract] [Full Text] [Related]
54. Somite differentiation. Sonic signals somites. Bumcrot DA; McMahon AP Curr Biol; 1995 Jun; 5(6):612-4. PubMed ID: 7552169 [TBL] [Abstract][Full Text] [Related]
55. Nature and origin of patterns of changes in cell shape in embryos. Jacobson AG J Supramol Struct; 1976; 5(3):371-80. PubMed ID: 1024122 [TBL] [Abstract][Full Text] [Related]
56. The cellular basis of the convergence and extension of the Xenopus neural plate. Keller R; Shih J; Sater A Dev Dyn; 1992 Mar; 193(3):199-217. PubMed ID: 1600240 [TBL] [Abstract][Full Text] [Related]
57. Gastrulation in birds: a model system for the study of animal morphogenesis. Stern CD; Canning DR Experientia; 1988 Aug; 44(8):651-7. PubMed ID: 3044815 [No Abstract] [Full Text] [Related]
58. Induction and the Turing-Child field in development. Schiffmann Y Prog Biophys Mol Biol; 2005 Sep; 89(1):36-92. PubMed ID: 15826672 [TBL] [Abstract][Full Text] [Related]
59. Cell cycles and clonal strings during formation of the zebrafish central nervous system. Kimmel CB; Warga RM; Kane DA Development; 1994 Feb; 120(2):265-76. PubMed ID: 8149908 [TBL] [Abstract][Full Text] [Related]