These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8169207)

  • 21. Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2.
    Jiang W; Metcalf WW; Lee KS; Wanner BL
    J Bacteriol; 1995 Nov; 177(22):6411-21. PubMed ID: 7592415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a umuDC locus in Salmonella typhimurium LT2.
    Smith CM; Eisenstadt E
    J Bacteriol; 1989 Jul; 171(7):3860-5. PubMed ID: 2661537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence.
    Sulavik MC; Dazer M; Miller PF
    J Bacteriol; 1997 Mar; 179(6):1857-66. PubMed ID: 9068629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli.
    Gupta SD; Wu HC; Rick PD
    J Bacteriol; 1997 Aug; 179(16):4977-84. PubMed ID: 9260936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures.
    Alvarez-Ordóñez A; Fernández A; Bernardo A; López M
    Food Microbiol; 2010 Feb; 27(1):44-9. PubMed ID: 19913691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Salmonella typhimurium mutants of RfaH-phenotype: genetics and antibiotic sensitivities.
    Stocker BA; Males BM; Takano W
    J Gen Microbiol; 1980 Jan; 116(1):17-24. PubMed ID: 6988542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A low-pH-inducible, stationary-phase acid tolerance response in Salmonella typhimurium.
    Lee IS; Slonczewski JL; Foster JW
    J Bacteriol; 1994 Mar; 176(5):1422-6. PubMed ID: 8113183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glucose transport in Salmonella typhimurium and Escherichia coli.
    Postma PW; Neyssel OM; van Ree R
    Eur J Biochem; 1982 Mar; 123(1):113-9. PubMed ID: 7040073
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suppression of the pleiotropic effects of HisH and HisF overproduction identifies four novel loci on the Salmonella typhimurium chromosome: osmH, sfiW, sfiX, and sfiY.
    Flores A; Casadesús J
    J Bacteriol; 1995 Sep; 177(17):4841-50. PubMed ID: 7665459
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Induced mutagenesis in Salmonella typhimurium AG262 strain constructed for screening the mutagens].
    Liamkina II; Andreeva IV; Stepanova NF; Rusina OIu; Skavronskaia AG
    Genetika; 1987 May; 23(5):802-8. PubMed ID: 3305161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic analysis of temperature-sensitive lethal mutants of Salmonella typhimurium.
    Schmid MB; Kapur N; Isaacson DR; Lindroos P; Sharpe C
    Genetics; 1989 Dec; 123(4):625-33. PubMed ID: 2558954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An inducible pathway is required for mutagenesis in Salmonella typhimurium LT2.
    Orrego C; Eisenstadt E
    J Bacteriol; 1987 Jun; 169(6):2885-8. PubMed ID: 3294811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Acetic Acid Tolerance Response induces cross-protection to salt stress in Salmonella typhimurium.
    Greenacre EJ; Brocklehurst TF
    Int J Food Microbiol; 2006 Oct; 112(1):62-5. PubMed ID: 16842874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induction of acid resistance of Salmonella typhimurium by exposure to short-chain fatty acids.
    Kwon YM; Ricke SC
    Appl Environ Microbiol; 1998 Sep; 64(9):3458-63. PubMed ID: 9726897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequence analysis and mapping of the Salmonella typhimurium LT2 umuDC operon.
    Smith CM; Koch WH; Franklin SB; Foster PL; Cebula TA; Eisenstadt E
    J Bacteriol; 1990 Sep; 172(9):4964-78. PubMed ID: 2144275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two outer membrane transport systems for vitamin B12 in Salmonella typhimurium.
    Rioux CR; Kadner RJ
    J Bacteriol; 1989 Jun; 171(6):2986-93. PubMed ID: 2656634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium.
    Park YK; Bearson B; Bang SH; Bang IS; Foster JW
    Mol Microbiol; 1996 May; 20(3):605-11. PubMed ID: 8736539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pleiotropic effects of poxA regulatory mutations of Escherichia coli and Salmonella typhimurium, mutations conferring sulfometuron methyl and alpha-ketobutyrate hypersensitivity.
    Van Dyk TK; Smulski DR; Chang YY
    J Bacteriol; 1987 Oct; 169(10):4540-6. PubMed ID: 2820932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of Salmonella enterica serovar Typhimurium genes important for survival in the swine gastric environment.
    Bearson SM; Bearson BL; Rasmussen MA
    Appl Environ Microbiol; 2006 Apr; 72(4):2829-36. PubMed ID: 16597989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological and regulatory roles of acid-induced small RNA RyeC in Salmonella Typhimurium.
    Ryan D; Mukherjee M; Nayak R; Dutta R; Suar M
    Biochimie; 2018 Jul; 150():48-56. PubMed ID: 29730297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.