These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8169219)

  • 21. Transcriptional regulation of the four promoters of the agarase gene (dagA) of Streptomyces coelicolor A3(2).
    Servín-González L; Jensen MR; White J; Bibb M
    Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2555-65. PubMed ID: 7528081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Possible involvement of the sco2127 gene product in glucose repression of actinorhodin production in Streptomyces coelicolor.
    Forero A; Sánchez M; Chávez A; Ruiz B; Rodríguez-Sanoja R; Servín-González L; Sánchez S
    Can J Microbiol; 2012 Oct; 58(10):1195-201. PubMed ID: 23051184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of catabolite control protein A-dependent repression in Staphylococcus xylosus by a genomic reporter gene system.
    Jankovic I; Egeter O; Brückner R
    J Bacteriol; 2001 Jan; 183(2):580-6. PubMed ID: 11133951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A glucose kinase from Mycobacterium smegmatis.
    Pimentel-Schmitt EF; Thomae AW; Amon J; Klieber MA; Roth HM; Muller YA; Jahreis K; Burkovski A; Titgemeyer F
    J Mol Microbiol Biotechnol; 2007; 12(1-2):75-81. PubMed ID: 17183214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in streptomyces coelicolor A3(2).
    van Wezel GP; König M; Mahr K; Nothaft H; Thomae AW; Bibb M; Titgemeyer F
    J Mol Microbiol Biotechnol; 2007; 12(1-2):67-74. PubMed ID: 17183213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The bld mutants of Streptomyces coelicolor are defective in the regulation of carbon utilization, morphogenesis and cell--cell signalling.
    Pope MK; Green BD; Westpheling J
    Mol Microbiol; 1996 Feb; 19(4):747-56. PubMed ID: 8820645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ccrA1: a mutation in Streptomyces coelicolor that affects the control of catabolite repression.
    Ingram C; Delic I; Westpheling J
    J Bacteriol; 1995 Jun; 177(12):3579-86. PubMed ID: 7768869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of the xylanase-encoding xlnA gene of Aspergillus tubigensis.
    de Graaff LH; van den Broeck HC; van Ooijen AJ; Visser J
    Mol Microbiol; 1994 May; 12(3):479-90. PubMed ID: 8065265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis.
    Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M
    J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amylase and chitinase genes in Streptomyces lividans are regulated by reg1, a pleiotropic regulatory gene.
    Nguyen J; Francou F; Virolle MJ; Guérineau M
    J Bacteriol; 1997 Oct; 179(20):6383-90. PubMed ID: 9335287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sugar uptake and sensitivity to carbon catabolite regulation in Streptomyces peucetius var. caesius.
    Guzmán S; Ramos I; Moreno E; Ruiz B; Rodríguez-Sanoja R; Escalante L; Langley E; Sanchez S
    Appl Microbiol Biotechnol; 2005 Nov; 69(2):200-6. PubMed ID: 15812641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glucose kinase alone cannot be responsible for carbon source regulation in Streptomyces peucetius var. caesius.
    Ramos I; Guzmán S; Escalante L; Imriskova I; Rodríguez-Sanoja R; Sanchez S; Langley E
    Res Microbiol; 2004 May; 155(4):267-74. PubMed ID: 15142624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Stülke J; Klier A; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways.
    del Castillo T; Ramos JL
    J Bacteriol; 2007 Sep; 189(18):6602-10. PubMed ID: 17616587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of Bacillus subtilis catabolite repression by transition state regulatory protein AbrB.
    Fisher SH; Strauch MA; Atkinson MR; Wray LV
    J Bacteriol; 1994 Apr; 176(7):1903-12. PubMed ID: 8144456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Streptomyces tsukubaensis as a new model for carbon repression: transcriptomic response to tacrolimus repressing carbon sources.
    Ordóñez-Robles M; Santos-Beneit F; Albillos SM; Liras P; Martín JF; Rodríguez-García A
    Appl Microbiol Biotechnol; 2017 Nov; 101(22):8181-8195. PubMed ID: 28983826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of glucose kinase-dependent and -independent pathways for carbon control of primary metabolism, development and antibiotic production in Streptomyces coelicolor by quantitative proteomics.
    Gubbens J; Janus MM; Florea BI; Overkleeft HS; van Wezel GP
    Mol Microbiol; 2012 Dec; 86(6):1490-507. PubMed ID: 23078239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of alpha-amylase-producing strains not subject to carbon catabolite repression.
    Mellouli L; Karray-Rebai I; Bejar S
    FEMS Microbiol Lett; 2002 Jan; 206(2):157-62. PubMed ID: 11814656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel plasmid vector that uses the glucose kinase gene (glkA) for the positive selection of stable gene disruptants in Streptomyces.
    van Wezel GP; Bibb MJ
    Gene; 1996 Dec; 182(1-2):229-30. PubMed ID: 8982095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2002 May; 4(3):309-14. PubMed ID: 11931563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.