These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8169219)

  • 41. Dissecting the role of the two Streptomyces peucetius var. caesius glucokinases in the sensitivity to carbon catabolite repression.
    Diana RM; Monserrat MR; Alba RR; Beatriz RV; Romina RS; Sergio SE
    J Ind Microbiol Biotechnol; 2021 Dec; 48(9-10):. PubMed ID: 34383077
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cloning, functional expression and partial characterization of the glucose kinase from Renibacterium salmoninarum.
    Concha MI; León G
    FEMS Microbiol Lett; 2000 May; 186(1):97-101. PubMed ID: 10779719
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of afsR2 gene transcription.
    Kim ES; Hong HJ; Choi CY; Cohen SN
    J Bacteriol; 2001 Apr; 183(7):2198-203. PubMed ID: 11244057
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast.
    Entian KD
    Mol Gen Genet; 1980; 178(3):633-7. PubMed ID: 6993859
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon catabolite regulation in Streptomyces: new insights and lessons learned.
    Romero-Rodríguez A; Rocha D; Ruiz-Villafán B; Guzmán-Trampe S; Maldonado-Carmona N; Vázquez-Hernández M; Zelarayán A; Rodríguez-Sanoja R; Sánchez S
    World J Microbiol Biotechnol; 2017 Sep; 33(9):162. PubMed ID: 28770367
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The ROK-family regulator Rok7B7 directly controls carbon catabolite repression, antibiotic biosynthesis, and morphological development in Streptomyces avermitilis.
    Lu X; Liu X; Chen Z; Li J; van Wezel GP; Chen W; Wen Y
    Environ Microbiol; 2020 Dec; 22(12):5090-5108. PubMed ID: 32452104
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Substrate recognition mechanism and substrate-dependent conformational changes of an ROK family glucokinase from Streptomyces griseus.
    Miyazono K; Tabei N; Morita S; Ohnishi Y; Horinouchi S; Tanokura M
    J Bacteriol; 2012 Feb; 194(3):607-16. PubMed ID: 22101842
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Overproduction and purification of an agarase of bacterial origin.
    Parro V; Vives C; Godia F; Mellado RP
    J Biotechnol; 1997 Oct; 58(1):59-66. PubMed ID: 9335178
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two genes encoding an endoglucanase and a cellulose-binding protein are clustered and co-regulated by a TTA codon in Streptomyces halstedii JM8.
    Garda AL; Fernández-Abalos JM; Sánchez P; Ruiz-Arribas A; Santamaría RI
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):403-11. PubMed ID: 9182697
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction of SCO2127 with BldKB and its possible connection to carbon catabolite regulation of morphological differentiation in Streptomyces coelicolor.
    Chávez A; Forero A; Sánchez M; Rodríguez-Sanoja R; Mendoza-Hernández G; Servín-Gonzalez L; Sánchez B; García-Huante Y; Rocha D; Langley E; Ruiz B; Sánchez S
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):799-806. PubMed ID: 20922376
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site.
    Wray LV; Pettengill FK; Fisher SH
    J Bacteriol; 1994 Apr; 176(7):1894-902. PubMed ID: 8144455
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression.
    Krüger S; Gertz S; Hecker M
    J Bacteriol; 1996 May; 178(9):2637-44. PubMed ID: 8626332
    [TBL] [Abstract][Full Text] [Related]  

  • 53. AbrB modulates expression and catabolite repression of a Bacillus subtilis ribose transport operon.
    Strauch MA
    J Bacteriol; 1995 Dec; 177(23):6727-31. PubMed ID: 7592460
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glucose regulation of specific gene expression is altered in a glucokinase-deficient mutant of Tetrahymena.
    Lavine JE; Roberts CT; Morse DE
    Mol Cell Biochem; 1982 Oct; 48(1):48-58. PubMed ID: 7177109
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Catabolite repression of beta-glucanase synthesis in Bacillus subtilis.
    Krüger S; Stülke J; Hecker M
    J Gen Microbiol; 1993 Sep; 139(9):2047-54. PubMed ID: 8245831
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of carbon catabolite repression on the G1 arrest of Saccharomyces cerevisiae MATa cells by alpha factor.
    Ruíz T; Villanueva JR; Rodríguez L
    J Gen Microbiol; 1984 Feb; 130(2):337-42. PubMed ID: 6374021
    [TBL] [Abstract][Full Text] [Related]  

  • 57. D-Glucose isomerase: constitutive and catabolite repression-resistant mutants of Streptomyces phaeochromogenes.
    Sanchez S; Quinto CM
    Appl Microbiol; 1975 Nov; 30(5):750-4. PubMed ID: 1200628
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relaxation of catabolite repression in streptomycin-dependent Escherichia coli.
    Coukell MB; Polglase WJ
    Biochem J; 1969 Feb; 111(3):279-86. PubMed ID: 4975019
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose.
    Temuujin U; Chi WJ; Lee SY; Chang YK; Hong SK
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):749-59. PubMed ID: 21655986
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Glucose transport and catabolite repression in Endomycopsis fibuligera yeasts].
    Afanas'eva VP; Burd GI
    Mikrobiologiia; 1980; 49(3):433-9. PubMed ID: 6250013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.