These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 8169594)

  • 1. Measurement of calcium transients and slow calcium current in myotubes.
    García J; Beam KG
    J Gen Physiol; 1994 Jan; 103(1):107-23. PubMed ID: 8169594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium transients associated with the T type calcium current in myotubes.
    García J; Beam KG
    J Gen Physiol; 1994 Dec; 104(6):1113-28. PubMed ID: 7699366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors.
    García J; Tanabe T; Beam KG
    J Gen Physiol; 1994 Jan; 103(1):125-47. PubMed ID: 8169595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of calcium permeation in dihydropyridine receptor function. Insights into channel gating and excitation-contraction coupling.
    Dirksen RT; Beam KG
    J Gen Physiol; 1999 Sep; 114(3):393-403. PubMed ID: 10469729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolonged depolarization promotes fast gating kinetics of L-type Ca2+ channels in mouse skeletal myotubes.
    O'Connell KM; Dirksen RT
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):647-59. PubMed ID: 11118495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of dihydropyridine receptors in terminating Ca2+ release in rat skeletal myotubes.
    Suda N
    J Physiol; 1995 Jul; 486 ( Pt 1)(Pt 1):105-12. PubMed ID: 7562626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium currents in embryonic and neonatal mammalian skeletal muscle.
    Beam KG; Knudson CM
    J Gen Physiol; 1988 Jun; 91(6):781-98. PubMed ID: 2458429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dihydropyridine receptors as voltage sensors for a depolarization-evoked, IP3R-mediated, slow calcium signal in skeletal muscle cells.
    Araya R; Liberona JL; Cárdenas JC; Riveros N; Estrada M; Powell JA; Carrasco MA; Jaimovich E
    J Gen Physiol; 2003 Jan; 121(1):3-16. PubMed ID: 12508050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage-dependent Ca2+ fluxes in skeletal myotubes determined using a removal model analysis.
    Schuhmeier RP; Melzer W
    J Gen Physiol; 2004 Jan; 123(1):33-51. PubMed ID: 14676283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium and calcium currents in acutely dissociated neurons from rat suprachiasmatic nucleus.
    Huang RC
    J Neurophysiol; 1993 Oct; 70(4):1692-703. PubMed ID: 7904302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depolarization-mediated intracellular calcium transients in isolated smooth muscle cells of guinea-pig urinary bladder.
    Ganitkevich V Ya; Isenberg G
    J Physiol; 1991 Apr; 435():187-205. PubMed ID: 1663160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-induced calcium release in crayfish skeletal muscle.
    Györke S; Palade P
    J Physiol; 1992 Nov; 457():195-210. PubMed ID: 1338456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-step Ca2+ intracellular release underlies excitation-contraction coupling in mouse urinary bladder myocytes.
    Morimura K; Ohi Y; Yamamura H; Ohya S; Muraki K; Imaizumi Y
    Am J Physiol Cell Physiol; 2006 Feb; 290(2):C388-403. PubMed ID: 16176965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local, stochastic release of Ca2+ in voltage-clamped rat heart cells: visualization with confocal microscopy.
    López-López JR; Shacklock PS; Balke CW; Wier WG
    J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):21-9. PubMed ID: 7853223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging of calcium transients during excitation-contraction coupling in skeletal muscle fibers.
    Vergara J; DiFranco M
    Adv Exp Med Biol; 1992; 311():227-36. PubMed ID: 1529756
    [No Abstract]   [Full Text] [Related]  

  • 16. Spontaneous and corticotropin-releasing factor-induced cytosolic calcium transients in corticotrophs.
    Guérineau N; Corcuff JB; Tabarin A; Mollard P
    Endocrinology; 1991 Jul; 129(1):409-20. PubMed ID: 1647305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low- and high-voltage-activated calcium currents in rat spinal dorsal horn neurons.
    Ryu PD; Randic M
    J Neurophysiol; 1990 Feb; 63(2):273-85. PubMed ID: 1690273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional impact of the ryanodine receptor on the skeletal muscle L-type Ca(2+) channel.
    Avila G; Dirksen RT
    J Gen Physiol; 2000 Apr; 115(4):467-80. PubMed ID: 10736313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel calcium current in dysgenic skeletal muscle.
    Adams BA; Beam KG
    J Gen Physiol; 1989 Sep; 94(3):429-44. PubMed ID: 2558151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Truncation of the carboxyl terminus of the dihydropyridine receptor beta1a subunit promotes Ca2+ dependent excitation-contraction coupling in skeletal myotubes.
    Sheridan DC; Cheng W; Ahern CA; Mortenson L; Alsammarae D; Vallejo P; Coronado R
    Biophys J; 2003 Jan; 84(1):220-37. PubMed ID: 12524277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.