These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 8169595)

  • 1. Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors.
    García J; Tanabe T; Beam KG
    J Gen Physiol; 1994 Jan; 103(1):125-47. PubMed ID: 8169595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of calcium permeation in dihydropyridine receptor function. Insights into channel gating and excitation-contraction coupling.
    Dirksen RT; Beam KG
    J Gen Physiol; 1999 Sep; 114(3):393-403. PubMed ID: 10469729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium transients associated with the T type calcium current in myotubes.
    García J; Beam KG
    J Gen Physiol; 1994 Dec; 104(6):1113-28. PubMed ID: 7699366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of calcium transients and slow calcium current in myotubes.
    García J; Beam KG
    J Gen Physiol; 1994 Jan; 103(1):107-23. PubMed ID: 8169594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+-dependent excitation-contraction coupling triggered by the heterologous cardiac/brain DHPR beta2a-subunit in skeletal myotubes.
    Sheridan DC; Carbonneau L; Ahern CA; Nataraj P; Coronado R
    Biophys J; 2003 Dec; 85(6):3739-57. PubMed ID: 14645065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro.
    Flucher BE; Andrews SB; Fleischer S; Marks AR; Caswell A; Powell JA
    J Cell Biol; 1993 Dec; 123(5):1161-74. PubMed ID: 8245124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling.
    Tanabe T; Beam KG; Adams BA; Niidome T; Numa S
    Nature; 1990 Aug; 346(6284):567-9. PubMed ID: 2165570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA.
    Tanabe T; Mikami A; Numa S; Beam KG
    Nature; 1990 Mar; 344(6265):451-3. PubMed ID: 2157159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel calcium current in dysgenic skeletal muscle.
    Adams BA; Beam KG
    J Gen Physiol; 1989 Sep; 94(3):429-44. PubMed ID: 2558151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs.
    Adams BA; Tanabe T; Mikami A; Numa S; Beam KG
    Nature; 1990 Aug; 346(6284):569-72. PubMed ID: 2165571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contractions of dysgenic skeletal muscle triggered by a potentiated, endogenous calcium current.
    Adams BA; Beam KG
    J Gen Physiol; 1991 Apr; 97(4):687-96. PubMed ID: 1711572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous expression of BI Ca2+ channels in dysgenic skeletal muscle.
    Adams BA; Mori Y; Kim MS; Tanabe T; Beam KG
    J Gen Physiol; 1994 Nov; 104(5):985-96. PubMed ID: 7876830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast activation of dihydropyridine-sensitive calcium channels of skeletal muscle. Multiple pathways of channel gating.
    Ma J; González A; Chen R
    J Gen Physiol; 1996 Sep; 108(3):221-32. PubMed ID: 8882865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac-type EC-coupling in dysgenic myotubes restored with Ca2+ channel subunit isoforms alpha1C and alpha1D does not correlate with current density.
    Kasielke N; Obermair GJ; Kugler G; Grabner M; Flucher BE
    Biophys J; 2003 Jun; 84(6):3816-28. PubMed ID: 12770887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of Ca2+ current, charge movements, and Ca2+ transients in myotubes deficient in dihydropyridine receptor beta 1 subunit transfected with beta 1 cDNA.
    Beurg M; Sukhareva M; Strube C; Powers PA; Gregg RG; Coronado R
    Biophys J; 1997 Aug; 73(2):807-18. PubMed ID: 9251797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the skeletal muscle calcium release channel by a cytoplasmic loop of the dihydropyridine receptor.
    Lu X; Xu L; Meissner G
    J Biol Chem; 1994 Mar; 269(9):6511-6. PubMed ID: 8120002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional impact of the ryanodine receptor on the skeletal muscle L-type Ca(2+) channel.
    Avila G; Dirksen RT
    J Gen Physiol; 2000 Apr; 115(4):467-80. PubMed ID: 10736313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unitary behavior of skeletal, cardiac, and chimeric L-type Ca2+ channels expressed in dysgenic myotubes.
    Dirksen RT; Beam KG
    J Gen Physiol; 1996 Jun; 107(6):731-42. PubMed ID: 8783073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoration of junctional tetrads in dysgenic myotubes by dihydropyridine receptor cDNA.
    Takekura H; Bennett L; Tanabe T; Beam KG; Franzini-Armstrong C
    Biophys J; 1994 Aug; 67(2):793-803. PubMed ID: 7948692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dihydropyridine receptors as voltage sensors for a depolarization-evoked, IP3R-mediated, slow calcium signal in skeletal muscle cells.
    Araya R; Liberona JL; Cárdenas JC; Riveros N; Estrada M; Powell JA; Carrasco MA; Jaimovich E
    J Gen Physiol; 2003 Jan; 121(1):3-16. PubMed ID: 12508050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.