These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 816991)
61. Regulation of mammalian aspartate-4-decarboxylase: its possible role in oxaloacetate and energy metabolism. Rathod PK; Fellman JH Arch Biochem Biophys; 1985 May; 238(2):447-51. PubMed ID: 2859839 [TBL] [Abstract][Full Text] [Related]
62. Stepwise accumulation of autoregulated enzyme activities during the cell cycle of the eucaryote Chlorella. Forde BG; John PC Exp Cell Res; 1973 Apr; 79(1):127-35. PubMed ID: 4360526 [No Abstract] [Full Text] [Related]
63. Stepwise accumulation of autoregulated enzyme activities during the cell cycle of the eucaryote Chlorella. Forde BG; John PC Exp Eye Res; 1973 Apr; 79(1):127-35. PubMed ID: 4350885 [No Abstract] [Full Text] [Related]
64. Analysis of acetate non-utilizing (acu) mutants in Aspergillus nidulans. Armitt S; McCullough W; Roberts CF J Gen Microbiol; 1976 Feb; 92(2):263-82. PubMed ID: 3622 [TBL] [Abstract][Full Text] [Related]
65. Formation and dissimilation of oxalacetate and pyruvate Pseudomonas citronellolis grown on noncarbohydrate substrates. O'Brien RW; Taylor BL J Bacteriol; 1977 Apr; 130(1):131-5. PubMed ID: 15974 [TBL] [Abstract][Full Text] [Related]
66. Inhibition of pyruvate carboxylase by sequestration of coenzyme A with sodium benzoate. Griffith AD; Cyr DM; Egan SG; Tremblay GC Arch Biochem Biophys; 1989 Feb; 269(1):201-7. PubMed ID: 2492793 [TBL] [Abstract][Full Text] [Related]
67. Regulation of phosphoenolpyruvate carboxylase of Zea mays by metabolites. Wong KF; Davies DD Biochem J; 1973 Mar; 131(3):451-8. PubMed ID: 4720710 [TBL] [Abstract][Full Text] [Related]
68. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene. Buch AD; Archana G; Kumar GN Microbiology (Reading); 2009 Aug; 155(Pt 8):2620-2629. PubMed ID: 19443543 [TBL] [Abstract][Full Text] [Related]
69. Pyruvate carboxylase defect: metabolic studies on cultured skin fibroblasts. Oizumi J; Ng WG; Donnell GN J Inherit Metab Dis; 1986; 9(2):120-8. PubMed ID: 3091918 [TBL] [Abstract][Full Text] [Related]
70. Characterization and regulation of pyruvate carboxylase of Bacillus licheniformis. Renner ED; Bernlohr RW J Bacteriol; 1972 Feb; 109(2):764-72. PubMed ID: 5058452 [TBL] [Abstract][Full Text] [Related]
71. Intracellular distribution of carbon dioxide-fixing enzymes in Trypanosoma cruzi and Crithidia fasciculata. Cazzulo JJ; Valle E; Docampo R; Cannata JJ J Gen Microbiol; 1980 Mar; 117(1):271-4. PubMed ID: 6993627 [TBL] [Abstract][Full Text] [Related]
72. Regulation and function of pyruvate kinase and malate enzyme in yeast. Fernández MJ; Medrano L; Ruiz-Amil M; Losada M Eur J Biochem; 1967 Dec; 3(1):11-8. PubMed ID: 5625036 [No Abstract] [Full Text] [Related]
73. The role of some membrane dehydrogenases in Pseudomonas fluorescens. Lynch WH Can J Microbiol; 1982 Aug; 28(8):907-15. PubMed ID: 6814736 [TBL] [Abstract][Full Text] [Related]
74. Bcl-2 inhibits tumor necrosis factor-alpha-mediated increase of glycolytic enzyme activities and enhances pyruvate carboxylase activity. Kim YH; Kim SS Mol Cells; 2003 Aug; 16(1):67-73. PubMed ID: 14503847 [TBL] [Abstract][Full Text] [Related]
75. Escherichia coli phosphoenolpyruvate carboxylase: studies on the mechanism of multiple allosteric interactions. Smith TE Arch Biochem Biophys; 1977 Oct; 183(2):538-52. PubMed ID: 335978 [No Abstract] [Full Text] [Related]
76. Regulation at the phosphoenolpyruvate branchpoint in Azotobacter vinelandii: phosphoenolpyruvate carboxylase. Liao CL; Atkinson DE J Bacteriol; 1971 Apr; 106(1):31-6. PubMed ID: 5551640 [TBL] [Abstract][Full Text] [Related]
78. Methionine degradation by Pseudomonas fluorescens UK1 and its methionine-utilizing mutant. Laakso S; Söderling E; Nurmikko V J Gen Microbiol; 1976 Jun; 94(2):305-12. PubMed ID: 820833 [TBL] [Abstract][Full Text] [Related]
79. On the activity and regulation of anaplerotic and gluconeogenetic enzymes during the growth process of baker's yeast. The biphasic growth. Haarasilta S; Oura E Eur J Biochem; 1975 Mar; 52(1):1-7. PubMed ID: 170081 [TBL] [Abstract][Full Text] [Related]
80. Differences in intermediary energy metabolism between juvenile and adult Fasciola hepatica. Tielens AG; van den Heuvel JM; van den Bergh SG Mol Biochem Parasitol; 1987 Jul; 24(3):273-81. PubMed ID: 3627172 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]