These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 8170680)

  • 1. Effects of RLN and SLN stimulation on glottal area.
    Bielamowicz S; Berke GS; Watson D; Gerratt BR; Kreiman J
    Otolaryngol Head Neck Surg; 1994 Apr; 110(4):370-80. PubMed ID: 8170680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of tension, stiffness, and airflow on laryngeal resistance in the in vivo canine model.
    Bielamowicz S; Berke GS; Kreiman J; Sercarz JA; Green DC; Gerratt BR
    Ann Otol Rhinol Laryngol; 1993 Oct; 102(10):761-8. PubMed ID: 8215095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling measured glottal volume velocity waveforms.
    Verneuil A; Berry DA; Kreiman J; Gerratt BR; Ye M; Berke GS
    Ann Otol Rhinol Laryngol; 2003 Feb; 112(2):120-31. PubMed ID: 12597284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromuscular compensation mechanisms in vocal fold paralysis and paresis.
    Dewan K; Vahabzadeh-Hagh A; Soofer D; Chhetri DK
    Laryngoscope; 2017 Jul; 127(7):1633-1638. PubMed ID: 28059441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in glottal area associated with increasing airflow.
    Sercarz JA; Berke GS; Bielamowicz S; Kreiman J; Ye M; Green DC
    Ann Otol Rhinol Laryngol; 1994 Feb; 103(2):139-44. PubMed ID: 8311390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of superior laryngeal nerve injury on glottal configuration/function of thyroidectomy-induced unilateral vocal fold paralysis.
    De Virgilio A; Chang MH; Jiang RS; Wang CP; Wu SH; Liu SA; Wang CC
    Otolaryngol Head Neck Surg; 2014 Dec; 151(6):996-1002. PubMed ID: 25214548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Reconstruction of Phonatory Glottal Shape and Volume: Effects of Neuromuscular Activation.
    Reddy NK; Schlegel P; Lee Y; Chhetri DK
    Laryngoscope; 2023 Feb; 133(2):357-365. PubMed ID: 35633189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of asymmetric recurrent laryngeal nerve stimulation on vibration, acoustics, and aerodynamics.
    Chhetri DK; Neubauer J; Sofer E
    Laryngoscope; 2014 Nov; 124(11):2544-50. PubMed ID: 24913182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pressure-regulated model of normal and pathologic phonation.
    Nasri S; Namazie A; Kreiman J; Sercarz JA; Gerratt BR; Berke GS
    Otolaryngol Head Neck Surg; 1994 Dec; 111(6):807-15. PubMed ID: 7991263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of driving pressure and recurrent laryngeal nerve stimulation on glottic vibration in a constant pressure model.
    Verneuil A; Kreiman J; Kevorkian K; Gerratt BR; Berke GS
    Otolaryngol Head Neck Surg; 1996 Jul; 115(1):15-23. PubMed ID: 8758624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of superior laryngeal nerve on vocal fold function: an in vivo canine model.
    Slavit DH; McCaffrey TV; Yanagi E
    Otolaryngol Head Neck Surg; 1991 Dec; 105(6):857-63. PubMed ID: 1787976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of superior laryngeal nerve stimulation on phonation in an in vivo canine model.
    Berke GS; Moore DM; Gerratt BR; Hanson DG; Natividad M
    Am J Otolaryngol; 1989; 10(3):181-7. PubMed ID: 2742054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of laryngeal nerve stimulation on phonation: a glottographic study using an in vivo canine model.
    Moore DM; Berke GS
    J Acoust Soc Am; 1988 Feb; 83(2):705-15. PubMed ID: 3351129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exit jet particle velocity in the in vivo canine laryngeal model with variable nerve stimulation.
    Bielamowicz S; Berke GS; Kreiman J; Gerratt BR
    J Voice; 1999 Jun; 13(2):153-60. PubMed ID: 10442746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of vibratory mode changes in symmetric and asymmetric activation of the canine larynx.
    Schlegel P; Berry DA; Chhetri DK
    PLoS One; 2022; 17(4):e0266910. PubMed ID: 35421159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of vocal fold mucosal wave velocity in an in vivo canine model.
    Sloan SH; Berke GS; Gerratt BR; Kreiman J; Ye M
    Laryngoscope; 1993 Sep; 103(9):947-53. PubMed ID: 8361313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonation Threshold Pressure Revisited: Effects of Intrinsic Laryngeal Muscle Activation.
    Azar SS; Chhetri DK
    Laryngoscope; 2022 Jul; 132(7):1427-1432. PubMed ID: 34784055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence and interactions of laryngeal adductors and cricothyroid muscles on fundamental frequency and glottal posture control.
    Chhetri DK; Neubauer J; Sofer E; Berry DA
    J Acoust Soc Am; 2014 Apr; 135(4):2052-64. PubMed ID: 25235003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of Vocal Fold Medial Surface 3D Trajectories: Effects of Neuromuscular Stimulation and Airflow.
    Schlegel P; Chung HR; Döllinger M; Chhetri DK
    Laryngoscope; 2024 Mar; 134(3):1249-1257. PubMed ID: 37672673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.