These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 8171029)
1. Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Kaushal S; Ridge KD; Khorana HG Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4024-8. PubMed ID: 8171029 [TBL] [Abstract][Full Text] [Related]
2. Palmitoylation of bovine opsin and its cysteine mutants in COS cells. Karnik SS; Ridge KD; Bhattacharya S; Khorana HG Proc Natl Acad Sci U S A; 1993 Jan; 90(1):40-4. PubMed ID: 8419942 [TBL] [Abstract][Full Text] [Related]
3. Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state. Davidson FF; Loewen PC; Khorana HG Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4029-33. PubMed ID: 8171030 [TBL] [Abstract][Full Text] [Related]
4. Opsins with mutations at the site of chromophore attachment constitutively activate transducin but are not phosphorylated by rhodopsin kinase. Robinson PR; Buczyłko J; Ohguro H; Palczewski K Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5411-5. PubMed ID: 8202499 [TBL] [Abstract][Full Text] [Related]
5. Glycosylation and palmitoylation are not required for the formation of the X-linked cone opsin visual pigments. Ostrer H; Pullarkat RK; Kazmi MA Mol Vis; 1998 Dec; 4():28. PubMed ID: 9852167 [TBL] [Abstract][Full Text] [Related]
6. Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125-->Arg in the transmembrane helix C. Garriga P; Liu X; Khorana HG Proc Natl Acad Sci U S A; 1996 May; 93(10):4560-4. PubMed ID: 8643443 [TBL] [Abstract][Full Text] [Related]
7. Characterization of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Mutations on the cytoplasmic surface affect transducin activation. Min KC; Zvyaga TA; Cypess AM; Sakmar TP J Biol Chem; 1993 May; 268(13):9400-4. PubMed ID: 8486634 [TBL] [Abstract][Full Text] [Related]
8. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. Fahmy K; Jäger F; Beck M; Zvyaga TA; Sakmar TP; Siebert F Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10206-10. PubMed ID: 7901852 [TBL] [Abstract][Full Text] [Related]
9. Rhodopsin: the functional significance of asn-linked glycosylation and other post-translational modifications. Murray AR; Fliesler SJ; Al-Ubaidi MR Ophthalmic Genet; 2009 Sep; 30(3):109-20. PubMed ID: 19941415 [TBL] [Abstract][Full Text] [Related]
10. Structure and function in rhodopsin. Requirements of a specific structure for the intradiscal domain. Anukanth A; Khorana HG J Biol Chem; 1994 Aug; 269(31):19738-44. PubMed ID: 8051054 [TBL] [Abstract][Full Text] [Related]
11. The amino- and carboxyl-terminal sequence of bovine rhodopsin. Hargrave PA; Fong SL J Supramol Struct; 1977; 6(4):559-70. PubMed ID: 592823 [TBL] [Abstract][Full Text] [Related]
12. Structure and function in rhodopsin: further elucidation of the role of the intradiscal cysteines, Cys-110, -185, and -187, in rhodopsin folding and function. Hwa J; Reeves PJ; Klein-Seetharaman J; Davidson F; Khorana HG Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1932-5. PubMed ID: 10051572 [TBL] [Abstract][Full Text] [Related]
13. The effects of amino acid replacements of glycine 121 on transmembrane helix 3 of rhodopsin. Han M; Lin SW; Smith SO; Sakmar TP J Biol Chem; 1996 Dec; 271(50):32330-6. PubMed ID: 8943295 [TBL] [Abstract][Full Text] [Related]
14. Structure and function in rhodopsin. Separation and characterization of the correctly folded and misfolded opsins produced on expression of an opsin mutant gene containing only the native intradiscal cysteine codons. Ridge KD; Lu Z; Liu X; Khorana HG Biochemistry; 1995 Mar; 34(10):3261-7. PubMed ID: 7880821 [TBL] [Abstract][Full Text] [Related]
15. Light-stable rhodopsin. II. An opsin mutant (TRP-265----Phe) and a retinal analog with a nonisomerizable 11-cis configuration form a photostable chromophore. Ridge KD; Bhattacharya S; Nakayama TA; Khorana HG J Biol Chem; 1992 Apr; 267(10):6770-5. PubMed ID: 1532391 [TBL] [Abstract][Full Text] [Related]
16. Effects of carboxyl-terminal truncation on the stability and G protein-coupling activity of bovine rhodopsin. Weiss ER; Osawa S; Shi W; Dickerson CD Biochemistry; 1994 Jun; 33(24):7587-93. PubMed ID: 8011624 [TBL] [Abstract][Full Text] [Related]
17. Examining rhodopsin folding and assembly through expression of polypeptide fragments. Ridge KD; Lee SS; Abdulaev NG J Biol Chem; 1996 Mar; 271(13):7860-7. PubMed ID: 8631831 [TBL] [Abstract][Full Text] [Related]
18. Requirement of N-linked glycosylation site in Drosophila rhodopsin. O'Tousa JE Vis Neurosci; 1992 May; 8(5):385-90. PubMed ID: 1534022 [TBL] [Abstract][Full Text] [Related]
19. Expression, stability, and membrane integration of truncation mutants of bovine rhodopsin. Heymann JA; Subramaniam S Proc Natl Acad Sci U S A; 1997 May; 94(10):4966-71. PubMed ID: 9144173 [TBL] [Abstract][Full Text] [Related]
20. Mutagenesis studies of human red opsin: trp-281 is essential for proper folding and protein-retinal interactions. Nakayama TA; Zhang W; Cowan A; Kung M Biochemistry; 1998 Dec; 37(50):17487-94. PubMed ID: 9860863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]