These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 8171030)
1. Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state. Davidson FF; Loewen PC; Khorana HG Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4029-33. PubMed ID: 8171030 [TBL] [Abstract][Full Text] [Related]
2. Structure and function in rhodopsin: further elucidation of the role of the intradiscal cysteines, Cys-110, -185, and -187, in rhodopsin folding and function. Hwa J; Reeves PJ; Klein-Seetharaman J; Davidson F; Khorana HG Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1932-5. PubMed ID: 10051572 [TBL] [Abstract][Full Text] [Related]
4. Palmitoylation of bovine opsin and its cysteine mutants in COS cells. Karnik SS; Ridge KD; Bhattacharya S; Khorana HG Proc Natl Acad Sci U S A; 1993 Jan; 90(1):40-4. PubMed ID: 8419942 [TBL] [Abstract][Full Text] [Related]
5. Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Kaushal S; Ridge KD; Khorana HG Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4024-8. PubMed ID: 8171029 [TBL] [Abstract][Full Text] [Related]
6. Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125-->Arg in the transmembrane helix C. Garriga P; Liu X; Khorana HG Proc Natl Acad Sci U S A; 1996 May; 93(10):4560-4. PubMed ID: 8643443 [TBL] [Abstract][Full Text] [Related]
7. Structure and function in rhodopsin. Separation and characterization of the correctly folded and misfolded opsins produced on expression of an opsin mutant gene containing only the native intradiscal cysteine codons. Ridge KD; Lu Z; Liu X; Khorana HG Biochemistry; 1995 Mar; 34(10):3261-7. PubMed ID: 7880821 [TBL] [Abstract][Full Text] [Related]
8. Structure and function in rhodopsin. Single cysteine substitution mutants in the cytoplasmic interhelical E-F loop region show position-specific effects in transducin activation. Yang K; Farrens DL; Hubbell WL; Khorana HG Biochemistry; 1996 Sep; 35(38):12464-9. PubMed ID: 8823181 [TBL] [Abstract][Full Text] [Related]
9. Functional interaction of transmembrane helices 3 and 6 in rhodopsin. Replacement of phenylalanine 261 by alanine causes reversion of phenotype of a glycine 121 replacement mutant. Han M; Lin SW; Minkova M; Smith SO; Sakmar TP J Biol Chem; 1996 Dec; 271(50):32337-42. PubMed ID: 8943296 [TBL] [Abstract][Full Text] [Related]
10. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between Cys316 and engineered cysteines in cytoplasmic loop 1. Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG Biochemistry; 2001 Oct; 40(42):12472-8. PubMed ID: 11601970 [TBL] [Abstract][Full Text] [Related]
11. Single-cysteine substitution mutants at amino acid positions 55-75, the sequence connecting the cytoplasmic ends of helices I and II in rhodopsin: reactivity of the sulfhydryl groups and their derivatives identifies a tertiary structure that changes upon light-activation. Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG Biochemistry; 1999 Jun; 38(25):7938-44. PubMed ID: 10387036 [TBL] [Abstract][Full Text] [Related]
12. Structure and function in rhodopsin: effects of disulfide cross-links in the cytoplasmic face of rhodopsin on transducin activation and phosphorylation by rhodopsin kinase. Cai K; Klein-Seetharaman J; Hwa J; Hubbell WL; Khorana HG Biochemistry; 1999 Sep; 38(39):12893-8. PubMed ID: 10504260 [TBL] [Abstract][Full Text] [Related]
13. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin. Zvyaga TA; Fahmy K; Sakmar TP Biochemistry; 1994 Aug; 33(32):9753-61. PubMed ID: 8068654 [TBL] [Abstract][Full Text] [Related]
14. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Karnik SS; Sakmar TP; Chen HB; Khorana HG Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8459-63. PubMed ID: 3186735 [TBL] [Abstract][Full Text] [Related]
15. The effects of amino acid replacements of glycine 121 on transmembrane helix 3 of rhodopsin. Han M; Lin SW; Smith SO; Sakmar TP J Biol Chem; 1996 Dec; 271(50):32330-6. PubMed ID: 8943295 [TBL] [Abstract][Full Text] [Related]
16. Structure and function in rhodopsin: Mass spectrometric identification of the abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants. Hwa J; Klein-Seetharaman J; Khorana HG Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4872-6. PubMed ID: 11320236 [TBL] [Abstract][Full Text] [Related]
17. Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure. Cai K; Klein-Seetharaman J; Farrens D; Zhang C; Altenbach C; Hubbell WL; Khorana HG Biochemistry; 1999 Jun; 38(25):7925-30. PubMed ID: 10387034 [TBL] [Abstract][Full Text] [Related]
19. Transducin activation by molecular species of rhodopsin other than metarhodopsin II. Okada D; Nakai T; Ikai A Photochem Photobiol; 1989 Feb; 49(2):197-203. PubMed ID: 2540499 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study. Zvyaga TA; Fahmy K; Siebert F; Sakmar TP Biochemistry; 1996 Jun; 35(23):7536-45. PubMed ID: 8652533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]