These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 8172861)

  • 21. [Numbers of cells and cell proliferation in intima of different human arteries].
    Bobryshev IuV; Karagodin VP; Kovalevskaia ZhI; Miasoedova VA; Shapyrina EV; Saliamov VI; Kargapolova IuM; Galaktionova DIu; Mel'nichenko AA; Orekhov AN
    Tsitologiia; 2011; 53(10):815-25. PubMed ID: 22232939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intimal thickenings of human aorta contain modified reassembled lipoproteins.
    Tîrziu D; Dobrian A; Tasca C; Simionescu M; Simionescu N
    Atherosclerosis; 1995 Jan; 112(1):101-14. PubMed ID: 7772061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of the adventitia on the presence of smooth muscle cells and macrophages in the arterial intima.
    Barker SG; Beesley JE; Baskerville PA; Martin JF
    Eur J Vasc Endovasc Surg; 1995 Feb; 9(2):222-7. PubMed ID: 7627657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques.
    Lutgens E; de Muinck ED; Kitslaar PJ; Tordoir JH; Wellens HJ; Daemen MJ
    Cardiovasc Res; 1999 Feb; 41(2):473-9. PubMed ID: 10341847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of fibrinopeptide B in early atherosclerotic lesion formation.
    Singh TM; Kadowaki MH; Glagov S; Zarins CK
    Am J Surg; 1990 Aug; 160(2):156-9. PubMed ID: 2382767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults.
    Stary HC
    Arteriosclerosis; 1989; 9(1 Suppl):I19-32. PubMed ID: 2912430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphologic characteristics of naturally occurring atherosclerosis in the brachiocephalic artery of the pigeon.
    Barr DA; Jerome WG; Lewis JC
    Exp Mol Pathol; 1991 Apr; 54(2):99-111. PubMed ID: 2029938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coexpression of endothelin-converting enzyme-1 and endothelin-1 in different stages of human atherosclerosis.
    Ihling C; Szombathy T; Bohrmann B; Brockhaus M; Schaefer HE; Loeffler BM
    Circulation; 2001 Aug; 104(8):864-9. PubMed ID: 11514370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: A pathology study.
    Otsuka F; Kramer MC; Woudstra P; Yahagi K; Ladich E; Finn AV; de Winter RJ; Kolodgie FD; Wight TN; Davis HR; Joner M; Virmani R
    Atherosclerosis; 2015 Aug; 241(2):772-82. PubMed ID: 26058741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATP-binding cassette transporter A1 expression and apolipoprotein A-I binding are impaired in intima-type arterial smooth muscle cells.
    Choi HY; Rahmani M; Wong BW; Allahverdian S; McManus BM; Pickering JG; Chan T; Francis GA
    Circulation; 2009 Jun; 119(25):3223-31. PubMed ID: 19528336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation.
    Faggiotto A; Ross R; Harker L
    Arteriosclerosis; 1984; 4(4):323-40. PubMed ID: 6466191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of concurrent administration of isradipine on the development of fatty streaks in the cholesterol-fed rabbit: a morphometric study.
    Skepper JN; Kappagoda CT
    Atherosclerosis; 1992 Sep; 96(1):17-31. PubMed ID: 1418099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macrophages, macrophage foam cells, and eccentric intimal thickening in the coronary arteries of young children.
    Stary HC
    Atherosclerosis; 1987 Apr; 64(2-3):91-108. PubMed ID: 3606726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular dynamics in early atherosclerotic lesion progression in white carneau pigeons. Spatial and temporal analysis of monocyte and smooth muscle invasion of the intima.
    Jerome WG; Lewis JC
    Arterioscler Thromb Vasc Biol; 1997 Apr; 17(4):654-64. PubMed ID: 9108777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative estimation of lipid-laden cells in atherosclerotic lesions of the human aorta.
    Andreeva ER; Orekhov AN; Smirnov VN
    Acta Anat (Basel); 1991; 141(4):316-23. PubMed ID: 1660667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions.
    Schwenke DC; Carew TE
    Arteriosclerosis; 1989; 9(6):895-907. PubMed ID: 2590067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stress fibers in endothelial cells overlying atherosclerotic lesions in rabbit aorta.
    Guyton JR; Shaffer DR; Henry PD
    Am J Med Sci; 1989 Aug; 298(2):79-82. PubMed ID: 2764020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Composition and classification of human atherosclerotic lesions.
    Stary HC
    Virchows Arch A Pathol Anat Histopathol; 1992; 421(4):277-90. PubMed ID: 1413492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Immunohistochemical and ultrastructural study of aortic lesions in fat-fed quails].
    Toda T
    Jikken Dobutsu; 1988 Apr; 37(2):179-85. PubMed ID: 3260871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathobiology of the heart in experimental diabetes: immunolocalization of lipoproteins, immunoglobulin G, and advanced glycation endproducts proteins in diabetic and/or hyperlipidemic hamster.
    Sima A; Popov D; Starodub O; Stancu C; Cristea C; Stern D; Simionescu M
    Lab Invest; 1997 Jul; 77(1):3-18. PubMed ID: 9251674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.