BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 8172901)

  • 1. Secondary 18O and primary 13C isotope effects as a probe of transition-state structure for enzymatic decarboxylation of oxalacetate.
    Waldrop GL; Braxton BF; Urbauer JL; Cleland WW; Kiick DM
    Biochemistry; 1994 May; 33(17):5262-7. PubMed ID: 8172901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-13 and deuterium isotope effects on oxalacetate decarboxylation by pyruvate carboxylase.
    Attwood PV; Tipton PA; Cleland WW
    Biochemistry; 1986 Dec; 25(25):8197-205. PubMed ID: 3028472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state kinetic studies of the metal ion-dependent decarboxylation of oxalacetate catalyzed by pyruvate kinase.
    Kiick DM; Cleland WW
    Arch Biochem Biophys; 1989 May; 270(2):647-54. PubMed ID: 2705784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal ion activator effects on intrinsic isotope effects for hydride transfer from decarboxylation in the reaction catalyzed by the NAD-malic enzyme from Ascaris suum.
    Karsten WE; Gavva SR; Park SH; Cook PF
    Biochemistry; 1995 Mar; 34(10):3253-60. PubMed ID: 7880820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments.
    Rosenberg RM; O'Leary MH
    Biochemistry; 1985 Mar; 24(7):1598-603. PubMed ID: 4005219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and mechanism of benzoylformate decarboxylase using 13C and solvent deuterium isotope effects on benzoylformate and benzoylformate analogues.
    Weiss PM; Garcia GA; Kenyon GL; Cleland WW; Cook PF
    Biochemistry; 1988 Mar; 27(6):2197-205. PubMed ID: 3378056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH dependence of kinetic parameters for oxalacetate decarboxylation and pyruvate reduction reactions catalyzed by malic enzyme.
    Park SH; Harris BG; Cook PF
    Biochemistry; 1986 Jul; 25(13):3752-9. PubMed ID: 3741834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotope effect studies of chicken liver NADP malic enzyme: role of the metal ion and viscosity dependence.
    Grissom CB; Cleland WW
    Biochemistry; 1988 Apr; 27(8):2927-34. PubMed ID: 3401456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary 18O isotope effects as a tool for studying reactions of phosphate mono-, di-, and triesters.
    Cleland WW
    FASEB J; 1990 Aug; 4(11):2899-905. PubMed ID: 2199287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OXALOACETATE DECARBOXYLATION AND OXALOACETATE-CARBON DIOXIDE EXCHANGE IN ACETOBACTER XYLINUM.
    BENZIMAN M; HELLER N
    J Bacteriol; 1964 Dec; 88(6):1678-87. PubMed ID: 14240957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medium effects in enzyme-catalyzed decarboxylations.
    O'Leary MH; Piazza GJ
    Biochemistry; 1981 May; 20(10):2743-8. PubMed ID: 7018566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH studies on the chemical mechanism of rabbit muscle pyruvate kinase. 1. Alternate substrates oxalacetate, glycolate, hydroxylamine, and fluoride.
    Dougherty TM; Cleland WW
    Biochemistry; 1985 Oct; 24(21):5870-5. PubMed ID: 4084498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of oxaloacetate decarboxylase from Veillonella parvula.
    Ng SK; Wong M; Hamilton IR
    J Bacteriol; 1982 Jun; 150(3):1252-8. PubMed ID: 7076619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treponema denticola cystalysin catalyzes beta-desulfination of L-cysteine sulfinic acid and beta-decarboxylation of L-aspartate and oxalacetate.
    Cellini B; Bertoldi M; Borri Voltattorni C
    FEBS Lett; 2003 Nov; 554(3):306-10. PubMed ID: 14623084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isotope effect studies of the pyruvate-dependent histidine decarboxylase from Lactobacillus 30a.
    Abell LM; O'Leary MH
    Biochemistry; 1988 Aug; 27(16):5933-9. PubMed ID: 3191101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of intermediate partitioning to calculate intrinsic isotope effects for the reaction catalyzed by malic enzyme.
    Grissom CB; Cleland WW
    Biochemistry; 1985 Feb; 24(4):944-8. PubMed ID: 3995001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permeable membrane/mass spectrometric measurement of solvent 1H/2H, 12C/13C, and 16O/18O kinetic isotope effects associated with alpha-chymotrypsin deacylation: evidence for reaction mechanism plasticity.
    Mishra AK; Klapper MH
    Biochemistry; 1986 Nov; 25(23):7328-36. PubMed ID: 3542025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity of maize leaf phosphoenolpyruvate carboxylase in relation to tautomerization and nonenzymatic decarboxylation of oxaloacetate.
    Walker GH; Ku MS; Edwards GE
    Arch Biochem Biophys; 1986 Aug; 248(2):489-501. PubMed ID: 3740840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple isotope effect probes of glutamate decarboxylase.
    O'Leary MH; Yamada H; Yapp CJ
    Biochemistry; 1981 Mar; 20(6):1476-81. PubMed ID: 7013794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon isotope effect of the enzymatic decarboxylation of pyruvic acid.
    O'Leary MH
    Biochem Biophys Res Commun; 1976 Dec; 73(3):614-8. PubMed ID: 795429
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.