BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 8172901)

  • 21. Tartrate dehydrogenase catalyzes the stepwise oxidative decarboxylation of D-malate with both NAD and thio-NAD.
    Karsten WE; Tipton PA; Cook PF
    Biochemistry; 2002 Oct; 41(40):12193-9. PubMed ID: 12356321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intermediate partitioning in the tartrate dehydrogenase-catalyzed oxidative decarboxylation of D-malate.
    Tipton PA
    Biochemistry; 1993 Mar; 32(11):2822-7. PubMed ID: 8457548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decarboxylation of oxalacetate by pyruvate carboxylase.
    Attwood PV; Cleland WW
    Biochemistry; 1986 Dec; 25(25):8191-6. PubMed ID: 3814578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of enzymatic and acid-catalyzed decarboxylations of prephenate.
    Hermes JD; Tipton PA; Fisher MA; O'Leary MH; Morrison JF; Cleland WW
    Biochemistry; 1984 Dec; 23(25):6263-75. PubMed ID: 6395898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies on the mechanism and stereochemical properties of the oxalacetate decarboxylase activity of pyruvate kinase.
    Creighton DJ; Rose IA
    J Biol Chem; 1976 Jan; 251(1):61-8. PubMed ID: 1244355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxalacetate decarboxylase activity in muscle is due to pyruvate kinase.
    Creighton DJ; Rose IA
    J Biol Chem; 1976 Jan; 251(1):69-72. PubMed ID: 1244356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heavy atom isotope effects on the reaction catalyzed by the oxalate decarboxylase from Bacillus subtilis.
    Reinhardt LA; Svedruzic D; Chang CH; Cleland WW; Richards NG
    J Am Chem Soc; 2003 Feb; 125(5):1244-52. PubMed ID: 12553826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utilization of oxalacetate by Acinetobacter calcoaceticus: evidence for coupling between malic enzyme and malic dehydrogenase.
    Dolin MI; Juni E
    J Bacteriol; 1978 Feb; 133(2):786-93. PubMed ID: 627536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 2. Formate dehydrogenase.
    Hermes JD; Morrical SW; O'Leary MH; Cleland WW
    Biochemistry; 1984 Nov; 23(23):5479-88. PubMed ID: 6391544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression and stereochemical and isotope effect studies of active 4-oxalocrotonate decarboxylase.
    Stanley TM; Johnson WH; Burks EA; Whitman CP; Hwang CC; Cook PF
    Biochemistry; 2000 Feb; 39(4):718-26. PubMed ID: 10651637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic and isotope effect studies of maize phosphoenolpyruvate carboxylase.
    O'Leary MH; Rife JE; Slater JD
    Biochemistry; 1981 Dec; 20(25):7308-14. PubMed ID: 7317383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fern L-methionine decarboxylase: kinetics and mechanism of decarboxylation and abortive transamination.
    Akhtar M; Stevenson DE; Gani D
    Biochemistry; 1990 Aug; 29(33):7648-60. PubMed ID: 2271524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of isotope effects to deduce the chemical mechanism of fumarase.
    Blanchard JS; Cleland WW
    Biochemistry; 1980 Sep; 19(19):4506-13. PubMed ID: 7407088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The 18O isotope effect in 13C nuclear magnetic resonance spectroscopy: mechanistic studies on asparaginase from Escherichia coli.
    Röhm KH; Van Etten RL
    Arch Biochem Biophys; 1986 Jan; 244(1):128-36. PubMed ID: 3511841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isotope effect studies of the chemical mechanism of pig heart NADP isocitrate dehydrogenase.
    Grissom CB; Cleland WW
    Biochemistry; 1988 Apr; 27(8):2934-43. PubMed ID: 3401457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of biotin and sodium in the decarboxylation of oxaloacetate by the membrane-bound oxaloacetate decarboxylase from Klebsiella aerogenes.
    Dimroth P
    Eur J Biochem; 1982 Jan; 121(2):435-41. PubMed ID: 7037395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of heavy-atom isotope effects on enzyme-catalyzed reactions.
    O'Leary MH
    Methods Enzymol; 1980; 64():83-104. PubMed ID: 6768960
    [No Abstract]   [Full Text] [Related]  

  • 38. Carbon isotope effects on the enzymatic decarboxylation of glutamic acid.
    O'Leary MH; Richards DT; Hendrickson DW
    J Am Chem Soc; 1970 Jul; 92(14):4435-40. PubMed ID: 5428387
    [No Abstract]   [Full Text] [Related]  

  • 39. Oxalacetate decarboxylase and pyruvate carboxylase activities, and effect of sulfhydryl reagents in malic enzyme from Sulfolobus solfataricus.
    Guagliardi A; Moracci M; Manco G; Rossi M; Bartolucci S
    Biochim Biophys Acta; 1988 Nov; 957(2):301-11. PubMed ID: 3142524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of the kinetic and chemical mechanism of malic enzyme using (2R,3R)-erythro-fluoromalate as a slow alternate substrate.
    Urbauer JL; Bradshaw DE; Cleland WW
    Biochemistry; 1998 Dec; 37(51):18026-31. PubMed ID: 9922171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.