These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 8173979)

  • 1. Reversal of rapidly transported protein and organelles at an axonal lesion.
    Snyder RE; Smith RS; Chen X
    Brain Res; 1994 Jan; 635(1-2):49-58. PubMed ID: 8173979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversal of rapid axonal transport at a lesion: leupeptin inhibits reversed protein transport, but does not inhibit reversed organelle transport.
    Smith RS; Snyder RE
    Brain Res; 1991 Jun; 552(2):215-27. PubMed ID: 1717113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action of brefeldin A on amphibian neurons: passage of newly synthesized proteins through the Golgi complex is not required for continued fast organelle transport in axons.
    Smith RS; Hammerschlag R; Snyder RE; Chan H; Bobinski J
    J Neurochem; 1994 May; 62(5):1698-706. PubMed ID: 7512616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the mechanism of the reversal of rapid organelle transport in myelinated axons of Xenopus laevis.
    Smith RS
    Cell Motil Cytoskeleton; 1988; 10(1-2):296-308. PubMed ID: 3141070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistence of axonal transport in isolated axons of the mouse.
    Smith RS; Bisby MA
    Eur J Neurosci; 1993 Sep; 5(9):1127-35. PubMed ID: 8281318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Junction between parent and daughter axons in regenerating myelinated nerve: properties of structure and rapid axonal transport.
    Chan H; Smith RS; Snyder RE
    J Comp Neurol; 1989 May; 283(3):391-404. PubMed ID: 2473097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the motion of organelles which undergo retrograde and anterograde rapid axonal transport in Xenopus.
    Koles ZJ; McLeod KD; Smith RS
    J Physiol; 1982 Jul; 328():469-84. PubMed ID: 6182282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The short term accumulation of axonally transported organelles in the region of localized lesions of single myelinated axons.
    Smith RS
    J Neurocytol; 1980 Feb; 9(1):39-65. PubMed ID: 6162922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anterograde to retrograde reversal of fast axonal transport within cold blocked and rewarmed intact axons.
    Smith RS; Snyder RE
    Brain Res; 1995 Feb; 672(1-2):205-13. PubMed ID: 7749742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of axonal transport: similarity of proteins transported in anterograde and retrograde directions.
    Bisby MA
    J Neurochem; 1981 Feb; 36(2):741-5. PubMed ID: 6162008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The kinematics of turnaround and retrograde axonal transport.
    Snyder RE
    J Neurobiol; 1986 Nov; 17(6):637-47. PubMed ID: 2432169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid axonal transport in Xenopus nerve in divalent cation free media.
    Snyder RE; Smith RS
    Can J Physiol Pharmacol; 1985 Oct; 63(10):1279-90. PubMed ID: 2416417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of material from the retrograde axonal transport system in frog sciatic nerve.
    Snyder RE
    J Neurobiol; 1989 Mar; 20(2):81-94. PubMed ID: 2466951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A radiolabelled pulse for the simultaneous study of anterograde and retrograde axonal transport.
    Snyder RE
    J Neurosci Methods; 1986 Aug; 17(2-3):109-19. PubMed ID: 2429122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The recovery of organelle transport and microtubule integrity in myelinated axons that are frozen and thawed.
    Smith RS; Kendal WS
    Can J Physiol Pharmacol; 1985 Apr; 63(4):292-7. PubMed ID: 2408718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G-protein effects on retrograde axonal transport.
    Moshiach S; Nelson TJ; Sanchez-Andres JV; Sakakibara M; Alkon DL
    Brain Res; 1993 Mar; 605(2):298-304. PubMed ID: 8481780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillatory motion of intra-axonal organelles of Xenopus laevis following inhibition of their rapid transport.
    Kendal WS; Koles ZJ; Smith RS
    J Physiol; 1983 Dec; 345():501-13. PubMed ID: 6198513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weak-base amines inhibit the anterograde-to-retrograde conversion of axonally transported vesicles in nerve terminals.
    Sahenk Z; Brown A
    J Neurocytol; 1991 May; 20(5):365-75. PubMed ID: 1714489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time imaging of axonally transported subresolution organelles in vertebrate myelinated axons.
    Smith RS
    J Neurosci Methods; 1989 Jan; 26(3):203-9. PubMed ID: 2465462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide specificity for the bidirectional transport of membrane-bounded organelles in isolated axoplasm.
    Leopold PL; Snyder R; Bloom GS; Brady ST
    Cell Motil Cytoskeleton; 1990; 15(4):210-9. PubMed ID: 1692515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.