These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8174648)

  • 1. Effects of hydrogen peroxide oxidation and calcium channel blockers on the equatorial potassium current of the frog lens.
    Walsh SP; Patterson JW
    Exp Eye Res; 1994 Mar; 58(3):257-65. PubMed ID: 8174648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of oxidants on lens transport.
    Walsh S; Patterson JW
    Invest Ophthalmol Vis Sci; 1991 Apr; 32(5):1648-58. PubMed ID: 1707864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. D600 increases the resistance associated with the equatorial potassium current of the lens.
    Walsh SP; Patterson JW
    Exp Eye Res; 1992 Jul; 55(1):81-5. PubMed ID: 1327858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pCMPS-induced changes in lens membrane permeability and transparency.
    Sanderson J; Duncan G
    Invest Ophthalmol Vis Sci; 1993 Jul; 34(8):2518-25. PubMed ID: 8392039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of potassium and sodium fluxes in the rat lens.
    Reszelbach R; Patterson JW
    Invest Ophthalmol Vis Sci; 1985 Jul; 26(7):945-52. PubMed ID: 2409052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the endoplasmic reticulum in shaping calcium dynamics in human lens cells.
    Williams MR; Riach RA; Collison DJ; Duncan G
    Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1009-17. PubMed ID: 11274079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Susceptibility of lens epithelial membrane SH groups to hydrogen peroxide.
    Hightower KR; Reddan JR; Dziedzic DC
    Invest Ophthalmol Vis Sci; 1989 Mar; 30(3):569-74. PubMed ID: 2538404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lens cation transport and permeability changes following exposure to hydrogen peroxide.
    Delamere NA; Paterson CA; Cotton TR
    Exp Eye Res; 1983 Jul; 37(1):45-53. PubMed ID: 6307730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p-chloro-mercuriphenyl sulphonate activates a quinine-sensitive potassium conductance in frog lens.
    Duncan G; Emptage NJ; Hightower KR
    J Physiol; 1988 Oct; 404():637-48. PubMed ID: 2473200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nitric oxide donors, S-nitroso-L-cysteine and sodium nitroprusside, on the whole-cell and single channel currents in single myocytes of the guinea-pig proximal colon.
    Lang RJ; Watson MJ
    Br J Pharmacol; 1998 Feb; 123(3):505-17. PubMed ID: 9504392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological analysis of voltage-dependent potassium currents in cultured skeletal myocytes of the frog Rana temporaria.
    Lukyanenko V; Katina IE; Nasledov GA; Terentyev DA
    Gen Physiol Biophys; 1995 Dec; 14(6):525-34. PubMed ID: 8773494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Link between the ciliary process and lens equatorial current.
    Walsh SP; Sullivan J; Patterson JW
    Lens Eye Toxic Res; 1992; 9(2):127-38. PubMed ID: 1596477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulatory role of calcium in rapid eye movement sleep deprivation-induced noradrenaline-mediated increase in Na-K-ATPase activity in rat brain.
    Das G; Gopalakrishnan A; Faisal M; Mallick BN
    Neuroscience; 2008 Jul; 155(1):76-89. PubMed ID: 18571330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Na+/K+ATPase mediates the alpha 1-adrenoceptor stimulated increase in 86Rb(+)-uptake in isolated ventricular cardiomyocytes from adult rat heart.
    Viko H; Osnes JB; Skomedal T
    Res Commun Mol Pathol Pharmacol; 1997 Apr; 96(1):89-106. PubMed ID: 9178370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible mechanisms underlying the midazolam-induced relaxation of the noradrenaline-contraction in rabbit mesenteric resistance artery.
    Shiraishi Y; Ohashi M; Kanmura Y; Yamaguchi S; Yoshimura N; Itoh T
    Br J Pharmacol; 1997 Jul; 121(6):1155-63. PubMed ID: 9249252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inhibitory influence of endothelin on active sodium-potassium transport in porcine lens.
    Okafor MC; Delamere NA
    Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1018-23. PubMed ID: 11274080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Ca2+ on rabbit translens short-circuit current: evidence for a Ca2+ inhibitable K+ conductance.
    Alvarez LJ; Candia OA; Zamudio AC
    Curr Eye Res; 1996 Dec; 15(12):1198-207. PubMed ID: 9018435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discriminant effects of behaviorally active and inactive analogs of phencyclidine on membrane electrical excitability.
    Aguayo LG; Weinstein H; Maayani S; Glick SD; Warnick JE; Albuquerque EX
    J Pharmacol Exp Ther; 1984 Jan; 228(1):80-7. PubMed ID: 6319672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of lens sulfhydryl groups induced by oxidative stress: Raman spectroscopic study of hydrogen peroxide-treated rat lens.
    Tomohiro M; Mizuno A
    Jpn J Ophthalmol; 1995; 39(2):130-6. PubMed ID: 8538068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium current oscillations across the rabbit lens epithelium.
    Alvarez LJ; Candia OA; Zamudio AC
    Exp Eye Res; 1997 Aug; 65(2):191-204. PubMed ID: 9268587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.