These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8175174)

  • 1. Pressure range for release of renomedullary depressor substance in rabbits.
    Thomas CJ; Woods RL; Gao Y; Anderson WP
    Hypertension; 1994 May; 23(5):639-45. PubMed ID: 8175174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of renal medullary and intravenous norepinephrine on renal antihypertensive function.
    Correia AG; Madden AC; Bergström G; Evans RG
    Hypertension; 2000 Apr; 35(4):965-70. PubMed ID: 10775570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a renomedullary vasodepressor system in rabbits and dogs.
    Christy IJ; Woods RL; Courneya CA; Denton KM; Anderson WP
    Hypertension; 1991 Sep; 18(3):325-33. PubMed ID: 1889845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal vasodepressor mechanisms: the medullipin system.
    Muirhead EE
    J Hypertens Suppl; 1993 Dec; 11(5):S53-8. PubMed ID: 8158434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Medullipin system. Generation of medullipin II by isolated kidney-liver perfusion.
    Muirhead EE; Brooks B; Byers LW; Brown P; Pitcock JA
    Hypertension; 1991 Nov; 18(5 Suppl):III158-63. PubMed ID: 1937680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mediators of the hypotensive response to increased renal perfusion in rabbits.
    Christy IJ; Woods RL; Anderson WP
    Hypertension; 1993 Feb; 21(2):149-54. PubMed ID: 8381391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dominance of pressure natriuresis in acute depressor responses to increased renal artery pressure in rabbits and rats.
    Correia AG; Bergström G; Jia J; Anderson WP; Evans RG
    J Physiol; 2002 Feb; 538(Pt 3):901-10. PubMed ID: 11826173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a renomedullary vasodepressor hormone.
    Thomas CJ; Woods RL; Evans RG; Alcorn D; Christy IJ; Anderson WP
    Clin Exp Pharmacol Physiol; 1996 Sep; 23(9):777-85. PubMed ID: 8911713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efferent renal nerve stimulation inhibits the antihypertensive function of the rat renal medulla when studied in a cross-circulation model.
    Rudenstam J; Bergström G; Göthberg G; Karlström G
    Acta Physiol Scand; 1995 Oct; 155(2):183-91. PubMed ID: 8669291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of renal medullary infusion of a vasopressin V1 agonist on renal antihypertensive mechanisms in rabbits.
    Bergström G; Evans RG
    Am J Physiol; 1998 Jul; 275(1):R76-85. PubMed ID: 9688963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological effects of the humoral renomedullary antihypertensive system.
    Göthberg G; Karlström G
    Am J Hypertens; 1991 Oct; 4(10 Pt 2):569S-574S. PubMed ID: 1741993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiology of the renomedullary depressor system.
    Göthberg G
    J Hypertens Suppl; 1994 Dec; 12(10):S57-64. PubMed ID: 7769493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of intrarenal infusion of 17-octadecynoic acid on renal antihypertensive mechanisms in anesthetized rabbits.
    Evans RG; Day KH; Roman RJ; Hopp KH; Anderson WP
    Am J Hypertens; 1998 Jul; 11(7):803-12. PubMed ID: 9683041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal and circulatory effects of medullipin I, as studied in the in-vivo cross-circulated isolated kidney and intact Wistar-Kyoto (WKY) rat.
    Karlström G; Arnman V; Bergström G; Muirhead EE; Rudenstam J; Göthberg G
    Acta Physiol Scand; 1989 Dec; 137(4):521-33. PubMed ID: 2603751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is the humoral renal antihypertensive activity of the spontaneously hypertensive rat (SHR) reset to the high blood pressure?
    Karlström G; Bergström G; Folkow B; Rudenstam J; Göthberg G
    Acta Physiol Scand; 1991 Apr; 141(4):517-30. PubMed ID: 1877351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal medullary antihypertensive mechanisms.
    Anderson WP; Woods RL; Thomas CJ; Szenasi G; Evans RG
    Clin Exp Pharmacol Physiol; 1995 Dec; 22(12):S426-9. PubMed ID: 8846509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure natriuresis and autoregulation of inner medullary blood flow in canine kidney.
    Majid DS; Godfrey M; Omoro SA
    Hypertension; 1997 Jan; 29(1 Pt 2):210-5. PubMed ID: 9039104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered renal medullary blood flow: A key factor or a parallel event in control of sodium excretion and blood pressure?
    Sadowski J; Bądzyńska B
    Clin Exp Pharmacol Physiol; 2020 Aug; 47(8):1323-1332. PubMed ID: 32163610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal medullary blood flow and renal medullary antihypertensive mechanisms.
    Bergström G; Göthberg G; Karlström G; Rudenstam J
    Clin Exp Hypertens; 1998 Jan; 20(1):1-26. PubMed ID: 9507785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The renal antihypertensive endocrine function: its relation to cytochrome P-450.
    Muirhead EE; Byers LW; Capdevila J; Brooks B; Pitcock JA; Brown PS
    J Hypertens; 1989 May; 7(5):361-9. PubMed ID: 2504817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.