These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

620 related articles for article (PubMed ID: 8176061)

  • 1. Intelligibility of conversational and clear speech in noise and reverberation for listeners with normal and impaired hearing.
    Payton KL; Uchanski RM; Braida LD
    J Acoust Soc Am; 1994 Mar; 95(3):1581-92. PubMed ID: 8176061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of reverberation and noise on speech intelligibility in normal-hearing and aided hearing-impaired listeners.
    Xia J; Xu B; Pentony S; Xu J; Swaminathan J
    J Acoust Soc Am; 2018 Mar; 143(3):1523. PubMed ID: 29604671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perception of clear fricatives by normal-hearing and simulated hearing-impaired listeners.
    Maniwa K; Jongman A; Wade T
    J Acoust Soc Am; 2008 Feb; 123(2):1114-25. PubMed ID: 18247912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perceived listening effort and speech intelligibility in reverberation and noise for hearing-impaired listeners.
    Schepker H; Haeder K; Rennies J; Holube I
    Int J Audiol; 2016 Dec; 55(12):738-747. PubMed ID: 27627181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning based segregation algorithm to increase speech intelligibility for hearing-impaired listeners in reverberant-noisy conditions.
    Zhao Y; Wang D; Johnson EM; Healy EW
    J Acoust Soc Am; 2018 Sep; 144(3):1627. PubMed ID: 30424625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relations among temporal acuity, hearing loss, and the perception of speech distorted by noise and reverberation.
    Irwin RJ; McAuley SF
    J Acoust Soc Am; 1987 May; 81(5):1557-65. PubMed ID: 3584693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of nearby maskers on speech intelligibility in reverberant, multi-talker environments.
    Westermann A; Buchholz JM
    J Acoust Soc Am; 2017 Mar; 141(3):2214. PubMed ID: 28372143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Listener Factors Associated with Individual Susceptibility to Reverberation.
    Reinhart PN; Souza PE
    J Am Acad Audiol; 2018 Jan; 29(1):73-82. PubMed ID: 29309025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises.
    Chen J; Wang Y; Yoho SE; Wang D; Healy EW
    J Acoust Soc Am; 2016 May; 139(5):2604. PubMed ID: 27250154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speaking Clearly for Older Adults With Normal Hearing: The Role of Speaking Rate.
    Krause JC; Panagiotopoulos AP
    J Speech Lang Hear Res; 2019 Oct; 62(10):3851-3859. PubMed ID: 31580758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory and auditory-visual intelligibility of speech in fluctuating maskers for normal-hearing and hearing-impaired listeners.
    Bernstein JG; Grant KW
    J Acoust Soc Am; 2009 May; 125(5):3358-72. PubMed ID: 19425676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speaking clearly for the hard of hearing I: Intelligibility differences between clear and conversational speech.
    Picheny MA; Durlach NI; Braida LD
    J Speech Hear Res; 1985 Mar; 28(1):96-103. PubMed ID: 3982003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Energy Equalization on the Intelligibility of Speech in Fluctuating Background Interference for Listeners With Hearing Impairment.
    D'Aquila LA; Desloge JG; Reed CM; Braida LD
    Trends Hear; 2017; 21():2331216517710354. PubMed ID: 28602128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dissociation between speech understanding and perceived reverberation.
    Ellis GM; Zahorik P
    Hear Res; 2019 Aug; 379():52-58. PubMed ID: 31075611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The combined effects of reverberation and nonstationary noise on sentence intelligibility.
    George EL; Festen JM; Houtgast T
    J Acoust Soc Am; 2008 Aug; 124(2):1269-77. PubMed ID: 18681613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Audiovisual asynchrony detection and speech intelligibility in noise with moderate to severe sensorineural hearing impairment.
    Başkent D; Bazo D
    Ear Hear; 2011; 32(5):582-92. PubMed ID: 21389856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection threshold for sound distortion resulting from noise reduction in normal-hearing and hearing-impaired listeners.
    Brons I; Dreschler WA; Houben R
    J Acoust Soc Am; 2014 Sep; 136(3):1375. PubMed ID: 25190410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing Binaural Pre-processing Strategies III: Speech Intelligibility of Normal-Hearing and Hearing-Impaired Listeners.
    Völker C; Warzybok A; Ernst SM
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sentence intelligibility during segmental interruption and masking by speech-modulated noise: Effects of age and hearing loss.
    Fogerty D; Ahlstrom JB; Bologna WJ; Dubno JR
    J Acoust Soc Am; 2015 Jun; 137(6):3487-501. PubMed ID: 26093436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.