These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 8176423)

  • 1. A simulation of action potentials in synaptic boutons during presynaptic inhibition.
    Graham B; Redman S
    J Neurophysiol; 1994 Feb; 71(2):538-49. PubMed ID: 8176423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer study of presynaptic inhibition controlling the spread of action potentials into axonal terminals.
    Segev I
    J Neurophysiol; 1990 May; 63(5):987-98. PubMed ID: 2358875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential.
    Barrett EF; Barrett JN
    J Physiol; 1982 Feb; 323():117-44. PubMed ID: 6980272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serial E-M and simulation study of presynaptic inhibition along a group Ia collateral in the spinal cord.
    Walmsley B; Graham B; Nicol MJ
    J Neurophysiol; 1995 Aug; 74(2):616-23. PubMed ID: 7472368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computation of action potential propagation and presynaptic bouton activation in terminal arborizations of different geometries.
    Lüscher HR; Shiner JS
    Biophys J; 1990 Dec; 58(6):1377-88. PubMed ID: 2275958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An examination of frog myelinated axons using intracellular microelectrode recording: the role of voltage-dependent and leak conductances on the steady-state electrical properties.
    Poulter MO; Hashiguchi T; Padjen AL
    J Neurophysiol; 1993 Dec; 70(6):2301-12. PubMed ID: 7509856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons.
    Engel D; Jonas P
    Neuron; 2005 Feb; 45(3):405-17. PubMed ID: 15694327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Participation of voltage-gated conductances on the response succeeding inhibitory synaptic potentials in the crayfish slowly adapting stretch receptor neuron.
    Barrio LC; Araque A; Buño W
    J Neurophysiol; 1994 Sep; 72(3):1140-51. PubMed ID: 7528791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation.
    Grill WM; Cantrell MB; Robertson MS
    J Comput Neurosci; 2008 Feb; 24(1):81-93. PubMed ID: 17562157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic currents in giant motor axons of the jellyfish, Aglantha digitale.
    Meech RW; Mackie GO
    J Neurophysiol; 1993 Mar; 69(3):884-93. PubMed ID: 7681867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of an inwardly rectifying chloride conductance in postsynaptic inhibition.
    Staley K
    J Neurophysiol; 1994 Jul; 72(1):273-84. PubMed ID: 7965011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium channels involved in synaptic transmission from reticulospinal axons in lamprey.
    Krieger P; Büschges A; el Manira A
    J Neurophysiol; 1999 Apr; 81(4):1699-705. PubMed ID: 10200205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel mechanism for presynaptic inhibition: GABA(A) receptors affect the release machinery.
    Parnas I; Rashkovan G; Ravin R; Fischer Y
    J Neurophysiol; 2000 Sep; 84(3):1240-6. PubMed ID: 10979998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina.
    Hartveit E
    J Neurophysiol; 1999 Jun; 81(6):2923-36. PubMed ID: 10368409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons.
    Foust AJ; Yu Y; Popovic M; Zecevic D; McCormick DA
    J Neurosci; 2011 Oct; 31(43):15490-8. PubMed ID: 22031895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential activation of two distinct mechanisms for presynaptic inhibition by a single inhibitory axon.
    Fischer Y; Parnas I
    J Neurophysiol; 1996 Dec; 76(6):3807-16. PubMed ID: 8985878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional properties and axon terminations of interneurons in laminae III-V of the mammalian spinal dorsal horn in vitro.
    Schneider SP
    J Neurophysiol; 1992 Nov; 68(5):1746-59. PubMed ID: 1282540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus.
    Buhl EH; Han ZS; Lörinczi Z; Stezhka VV; Karnup SV; Somogyi P
    J Neurophysiol; 1994 Apr; 71(4):1289-307. PubMed ID: 8035215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic inhibition and antidromic spikes in primary afferents of the crayfish: a computational and experimental analysis.
    Cattaert D; Libersat F; El Manira A A
    J Neurosci; 2001 Feb; 21(3):1007-21. PubMed ID: 11157086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintenance of high-frequency transmission at purkinje to cerebellar nuclear synapses by spillover from boutons with multiple release sites.
    Telgkamp P; Padgett DE; Ledoux VA; Woolley CS; Raman IM
    Neuron; 2004 Jan; 41(1):113-26. PubMed ID: 14715139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.