These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 8176423)

  • 21. Synapse-Level Determination of Action Potential Duration by K(+) Channel Clustering in Axons.
    Rowan MJ; DelCanto G; Yu JJ; Kamasawa N; Christie JM
    Neuron; 2016 Jul; 91(2):370-83. PubMed ID: 27346528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between presynaptic calcium transients and postsynaptic currents at single gamma-aminobutyric acid (GABA)ergic boutons.
    Kirischuk S; Veselovsky N; Grantyn R
    Proc Natl Acad Sci U S A; 1999 Jun; 96(13):7520-5. PubMed ID: 10377447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pentobarbitone modulates calcium transients in axons and synaptic boutons of hippocampal CA1 neurons.
    Baudoux S; Empson RM; Richards CD
    Br J Pharmacol; 2003 Nov; 140(5):971-9. PubMed ID: 14517184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large amplitude variability of GABAergic IPSCs in melanotropes from Xenopus laevis: evidence that quantal size differs between synapses.
    Borst JG; Lodder JC; Kits KS
    J Neurophysiol; 1994 Feb; 71(2):639-55. PubMed ID: 8176432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Presynaptic calcium channels and the depletion of synaptic cleft calcium ions.
    Stanley EF
    J Neurophysiol; 2000 Jan; 83(1):477-82. PubMed ID: 10634889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release.
    Vervaeke K; Gu N; Agdestein C; Hu H; Storm JF
    J Physiol; 2006 Oct; 576(Pt 1):235-56. PubMed ID: 16840518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetic Visualization of Presynaptic Tonic Inhibition of Cerebellar Parallel Fibers.
    Berglund K; Wen L; Dunbar RL; Feng G; Augustine GJ
    J Neurosci; 2016 May; 36(21):5709-23. PubMed ID: 27225762
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions.
    Zamir O; Charlton MP
    J Physiol; 2006 Feb; 571(Pt 1):83-99. PubMed ID: 16339182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chloride conductance produces both presynaptic inhibition and antidromic spikes in primary afferents.
    Cattaert D; el Manira A; Clarac F
    Brain Res; 1994 Dec; 666(1):109-12. PubMed ID: 7889358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing.
    Ford MC; Alexandrova O; Cossell L; Stange-Marten A; Sinclair J; Kopp-Scheinpflug C; Pecka M; Attwell D; Grothe B
    Nat Commun; 2015 Aug; 6():8073. PubMed ID: 26305015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction between facilitation and presynaptic inhibition at the crayfish neuromuscular junction.
    DeMill CM; Delaney KR
    J Exp Biol; 2005 Jun; 208(Pt 11):2135-45. PubMed ID: 15914657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ethanol potentiates GABAergic synaptic transmission in a postsynaptic neuron/synaptic bouton preparation from basolateral amygdala.
    Zhu PJ; Lovinger DM
    J Neurophysiol; 2006 Jul; 96(1):433-41. PubMed ID: 16624993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shunting versus inactivation: analysis of presynaptic inhibitory mechanisms in primary afferents of the crayfish.
    Cattaert D; El Manira A
    J Neurosci; 1999 Jul; 19(14):6079-89. PubMed ID: 10407044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synaptic potentials and threshold currents underlying spike production in motor giant axons of Aglantha digitale.
    Meech RW; Mackie GO
    J Neurophysiol; 1995 Oct; 74(4):1662-70. PubMed ID: 8989402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mathematical based calculation of a myelinated segment in axons.
    Namazi H; Kulish VV
    Comput Biol Med; 2013 Jul; 43(6):693-8. PubMed ID: 23668344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of TTX-sensitive and TTX-resistant sodium channels in Adelta- and C-fiber conduction and synaptic transmission.
    Pinto V; Derkach VA; Safronov BV
    J Neurophysiol; 2008 Feb; 99(2):617-28. PubMed ID: 18057109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Presynaptic inhibition of primary olfactory afferents mediated by different mechanisms in lobster and turtle.
    Wachowiak M; Cohen LB
    J Neurosci; 1999 Oct; 19(20):8808-17. PubMed ID: 10516300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inter-bouton variability of synaptic strength correlates with heterogeneity of presynaptic Ca(2+) signals.
    Kirischuk S; Grantyn R
    J Neurophysiol; 2002 Oct; 88(4):2172-6. PubMed ID: 12364541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synaptic integration in a model of cerebellar granule cells.
    Gabbiani F; Midtgaard J; Knöpfel T
    J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-bouton-mediated synaptic transmission: postsynaptic conductance changes in their relationship with presynaptic calcium signals.
    Kirischuk S; Veselovsky N; Grantyn R
    Pflugers Arch; 1999 Oct; 438(5):716-24. PubMed ID: 10555571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.