These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 817660)
1. 4,4'-isopropylidine-bis(2-isopropyl)phenol, a new inhibitor for cell wall formation of Bacillus subtilis. Shimi IR; Shoukry S; Zaki Z Antimicrob Agents Chemother; 1976 Apr; 9(4):580-4. PubMed ID: 817660 [TBL] [Abstract][Full Text] [Related]
2. Mucopeptide synthesis by rod mutants of Bacillus subtilis. Rogers HJ; Thurman PF; Taylor C; Reeve JN J Gen Microbiol; 1974 Dec; 85(2):335-49. PubMed ID: 4217357 [No Abstract] [Full Text] [Related]
3. Antimicrobial activity of 6-oxophenolic triterpenoids. Mode of action against Bacillus subtilis. de León L; Beltrán B; Moujir L Planta Med; 2005 Apr; 71(4):313-9. PubMed ID: 15856406 [TBL] [Abstract][Full Text] [Related]
4. Fractionation and partial characterization of the products of autolysis of cell walls of Bacillus subtilis. Young FE J Bacteriol; 1966 Oct; 92(4):839-46. PubMed ID: 4959047 [TBL] [Abstract][Full Text] [Related]
5. The actions of penicillin and other antibiotics on bacterial cell wall synthesis. Strominger JL Johns Hopkins Med J; 1973 Aug; 133(2):63-81. PubMed ID: 4352815 [No Abstract] [Full Text] [Related]
6. Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. Boylan RJ; Mendelson NH; Brooks D; Young FE J Bacteriol; 1972 Apr; 110(1):281-90. PubMed ID: 4622900 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of the D-alanine:D-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium's susceptibility to antibiotics that target the cell wall. May JJ; Finking R; Wiegeshoff F; Weber TT; Bandur N; Koert U; Marahiel MA FEBS J; 2005 Jun; 272(12):2993-3003. PubMed ID: 15955059 [TBL] [Abstract][Full Text] [Related]
8. Phosphonopeptides as antibacterial agents: mechanism of action of alaphosphin. Atherton FR; Hall MJ; Hassall CH; Lambert RW; Lloyd WJ; Ringrose PS Antimicrob Agents Chemother; 1979 May; 15(5):696-705. PubMed ID: 525987 [TBL] [Abstract][Full Text] [Related]
10. Turnover of the cell wall of Gram-positive bacteria. Mauck J; Chan L; Glaser L J Biol Chem; 1971 Mar; 246(6):1820-7. PubMed ID: 4993960 [No Abstract] [Full Text] [Related]
11. Gelatin-induced reversion of protoplasts of Bacillus subtilis to the bacillary form: biosynthesis of macromolecules and wall during successive steps. Landman OE; Forman A J Bacteriol; 1969 Aug; 99(2):576-89. PubMed ID: 4980068 [TBL] [Abstract][Full Text] [Related]
12. EFFECT OF PHENOL ON BACILLUS SUBTILIS SPORES AT ELEVATED TEMPERATURES. RUSSELL AD; LOOSEMORE M Appl Microbiol; 1964 Sep; 12(5):403-6. PubMed ID: 14215968 [TBL] [Abstract][Full Text] [Related]
13. Turnover of the cell wall of Bacillus subtilis W-23 during logarithmic growth. Mauck J; Glaser L Biochem Biophys Res Commun; 1970 May; 39(4):699-706. PubMed ID: 4992428 [No Abstract] [Full Text] [Related]
14. Estimates of the porosity of Bacillus licheniformis and Bacillus subtilis cell walls. Hughes RC; Thurman PF; Stokes E Z Immunitatsforsch Exp Klin Immunol; 1975 Jul; 149(2-4):126-35. PubMed ID: 126549 [TBL] [Abstract][Full Text] [Related]
15. Experimental anticancer studies. XXXVI. The effect of 2-(2-hydroxyphenyliminomethyl)-4-n-hexylphenol on ribonucleic acid synthesis and energy metabolism in Bacillus subtilis. Ujiie T Chem Pharm Bull (Tokyo); 1968 Dec; 16(12):2488-94. PubMed ID: 4975995 [No Abstract] [Full Text] [Related]
16. Bacteria's different ways to recycle their own cell wall. Mayer C; Kluj RM; Mühleck M; Walter A; Unsleber S; Hottmann I; Borisova M Int J Med Microbiol; 2019 Nov; 309(7):151326. PubMed ID: 31296364 [TBL] [Abstract][Full Text] [Related]
17. Effect of beta-lysin on isolated cell walls and protoplasts of Bacillus subtilis. Matheson A; Donaldson DM J Bacteriol; 1970 Jan; 101(1):314-7. PubMed ID: 4983652 [TBL] [Abstract][Full Text] [Related]
18. Disruption of the cell wall lytic enzyme CwlO affects the amount and molecular size of poly-γ-glutamic acid produced by Bacillus subtilis (natto). Mitsui N; Murasawa H; Sekiguchi J J Gen Appl Microbiol; 2011; 57(1):35-43. PubMed ID: 21478646 [TBL] [Abstract][Full Text] [Related]
19. Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment. Compaoré CS; Nielsen DS; Ouoba LI; Berner TS; Nielsen KF; Sawadogo-Lingani H; Diawara B; Ouédraogo GA; Jakobsen M; Thorsen L Int J Food Microbiol; 2013 Apr; 162(3):297-307. PubMed ID: 23466466 [TBL] [Abstract][Full Text] [Related]
20. Quantitative structure-inhibitory activity relationships of phenols and fatty acids for Bacillus subtilis spore germination. Yasuda Y; Tochikubo K; Hachisuka Y; Tomida H; Ikeda K J Med Chem; 1982 Mar; 25(3):315-20. PubMed ID: 6802973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]