These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 8177089)
1. Microprocessor-based memory device for ambulatory heart rate and physical activity recording. Makikawa M; Imai K; Shindoi T; Tanooka K; Iizumi H; Mitani H Methods Inf Med; 1994 Mar; 33(1):94-6. PubMed ID: 8177089 [TBL] [Abstract][Full Text] [Related]
2. Development of an ambulatory physical activity memory device and its application for the categorization of actions in daily life. Makikawa M; Iizumi H Medinfo; 1995; 8 Pt 1():747-50. PubMed ID: 8591316 [TBL] [Abstract][Full Text] [Related]
3. [A quantitative analysis of a predictive model of ambulatory blood pressure monitoring integrating physical activity recording]. Siché JP; Larota C; Charbonnier S; Baguet JP; Diourté B; Bonnet JL; Mallion JM Arch Mal Coeur Vaiss; 1998 Aug; 91(8):979-84. PubMed ID: 9749149 [TBL] [Abstract][Full Text] [Related]
4. Design of a cardiac monitor in terms of parameters of QRS complex. Chen ZC; Ni LL; Su KP; Wang HY; Jiang DZ Space Med Med Eng (Beijing); 2002 Aug; 15(4):246-9. PubMed ID: 12422858 [TBL] [Abstract][Full Text] [Related]
5. Accuracy of a novel real-time microprocessor QRS detector for heart rate variability assessment. Loimaala A; Sievänen H; Laukkanen R; Pärkkä J; Vuori I; Huikuri H Clin Physiol; 1999 Jan; 19(1):84-8. PubMed ID: 10068870 [TBL] [Abstract][Full Text] [Related]
6. The precision and accuracy of a portable heart rate monitor. Seaward BL; Sleamaker RH; McAuliffe T; Clapp JF Biomed Instrum Technol; 1990; 24(1):37-41. PubMed ID: 2306564 [TBL] [Abstract][Full Text] [Related]
8. A real-time microprocessor QRS detector system with a 1-ms timing accuracy for the measurement of ambulatory HRV. Ruha A; Sallinen S; Nissilä S IEEE Trans Biomed Eng; 1997 Mar; 44(3):159-67. PubMed ID: 9216129 [TBL] [Abstract][Full Text] [Related]
9. [Development of a portable ambulatory ECG monitor based on embedded microprocessor unit]. Wang DX; Wang GJ Space Med Med Eng (Beijing); 2005 Jun; 18(3):196-200. PubMed ID: 16161276 [TBL] [Abstract][Full Text] [Related]
13. Development and evaluation of a microprocessor-based ergonomic dosimeter for evaluating carpentry tasks. Bhattacharya A; Warren J; Teuschler J; Dimov M; Medvedovic M; Lemasters G Appl Ergon; 1999 Dec; 30(6):543-53. PubMed ID: 10693834 [TBL] [Abstract][Full Text] [Related]
14. Recording of ECG signals on a portable MiniDisc recorder for time and frequency domain heart rate variability analysis. Norman SE; Eager RA; Waran NK; Jeffery L; Schroter RC; Marlin DJ Physiol Behav; 2005 Jan; 83(5):729-38. PubMed ID: 15639158 [TBL] [Abstract][Full Text] [Related]
15. Heart rate variability characterization in daily physical activities using wavelet analysis and multilayer fuzzy activity clustering. Chan HL; Fang SC; Ko YL; Lin MA; Huang HH; Lin CH IEEE Trans Biomed Eng; 2006 Jan; 53(1):133-9. PubMed ID: 16402613 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Polar 810s and an ambulatory ECG system for RR interval measurement during progressive exercise. Kingsley M; Lewis MJ; Marson RE Int J Sports Med; 2005; 26(1):39-44. PubMed ID: 15643533 [TBL] [Abstract][Full Text] [Related]
19. Assessment of prescribed increases in physical activity: application of a new method for microprocessor analysis of heart rate. Mueller JK; Gossard D; Adams FR; Taylor CB; Haskell WL; Kraemer HC; Ahn DK; Burnett K; DeBusk RF Am J Cardiol; 1986 Feb; 57(6):441-5. PubMed ID: 3946262 [TBL] [Abstract][Full Text] [Related]
20. A microprocessor-based data-acquisition system for measuring plantar pressures from ambulatory subjects. Zhu HS; Harris GF; Wertsch JJ; Tompkins WJ; Webster JG IEEE Trans Biomed Eng; 1991 Jul; 38(7):710-4. PubMed ID: 1879865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]